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Abstract 
This thesis investigates the costs related to reducing greenhouse gas emissions within the Danish 

dairy sector and the diversity in the abatement costs across the sector. The results can contribute 

to finding a cost-efficient way towards the national 70 pct. reduction target implying minimum 

costs for both the agricultural sector and the society.  

 

The first part of this thesis concerns estimating greenhouse gas (GHG) emissions, as suitable 

farm- specific emissions are not currently available. 

The second part contains an efficiency analysis, carried out by using a modified Data 

Envelopment Analysis model including the estimated GHG emissions as an undesirable output. 

The model assumes weak disposability and applies a directional distance function. Frontier 

shadow prices are extracted from the model, measuring the marginal abatement costs for GHG 

emissions given the best technology available in the sector today. Furthermore, this thesis 

proposes a new method for measuring abatement costs for inefficient farms, where the 

technological lags, i.e. efficiency potentials, found in the model are taken into account. These 

abatement costs represent the average opportunity costs and are calculated by examining the 

trade-off in the potentials found for either focusing on maximizing revenue or reducing GHG 

emissions. 

 

The model defines best practice for the sector and through this the current technological lag for 

inefficient farms. Thereby, the model determines the improvement potential for farms not 

operating at best practice. The models find that if inefficient farms only focus on improving 

economic performance, there is a potential within the included sample to increase the aggregated 

revenue with approximately 3 bill. DKK (corresponding to an increase of 28 pct.). Contrary if 

they only focus on reducing GHG emissions, there is a potential reduction of approximately 

639.000 ton CO2e (corresponding to a decrease of 35 pct.). 

 

The thesis finds that it is relatively costly to reduce GHG emissions for Danish dairy farms 

compared to the general cost of abating GHG emissions in Denmark, which is estimated by the 

Danish Council of Climate Change to be 1.500 DKK. The results show that the average 

abatement cost of a ton CO2e is around 4.500 DKK for conventional farms and 6.400 DKK for 

organic farms   
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Introduction  

Greenhouse gases in the atmosphere are essential for the earth's regulation of the temperature. In the 

last century, the temperature has increased due to an increase in greenhouse gases in the atmosphere 

leading to global warming. A study from 2013 finds that 97 pct. of researchers endorse that the 

global warming is caused by humans as a result of higher greenhouse gas (GHG) emissions partly 

due to more intense agriculture and burning of fossil fuels (Cook, et al., 2013). The temperature will 

continuously increase, if the global emissions of greenhouse gases are not reduced.  

 

To mitigate the increasing temperatures, the Paris Agreement was adopted at the 2015 United 

Nations Climate Change Conference (COP21). With the Paris Agreement, 196 countries settled on 

a common goal within the global challenges of climate change. One of the main and most discussed 

objectives of the Paris Agreement, is the worldwide goal of keeping the temperature increase below 

2°C, also known as the global temperature target, and to further initiate actions to limit the rise in 

temperature to only 1,5°C.  

 

National states are to implement actions that will enable the objectives set out in the Paris 

Agreement. Furthermore, for the non-quota sector, which in Denmark mainly includes agriculture 

and transport, there is a common target set out by the European Union (EU) of reducing the 

greenhouse gas emissions with 39 pct. in 2030 compared to the level in 2005 (The Ministry of 

Environment and Food, 2020).  

In Denmark, the objectives are partially implemented through a new climate law, which was agreed 

upon by the government and a majority of the Danish parliament in December 2019 and adopted in 

2020. The Danish climate law concerns a 70 pct. reduction of the greenhouse gas emissions by the 

year 2030 compared to the 1990 level (Lov om klima no. 965/2020). The 70 pct. reduction in GHG 

emissions is an intermediate target of the overall objective of Denmark being climate neutral by the 

year 2050. The goal is to be reached as cost efficient as possible, with a specific focus on factors 

such as the green transition in the long run, sustainable business development and the Danish 

competitiveness internationally. Furthermore, it is explicitly stated that actions must lead to real 

inland reduction of the GHG emissions. 
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In 2017, the agricultural sector accounted for 22 pct. of the emissions of greenhouse gasses in 

Denmark, which makes the agricultural sector one of the main sources of GHG emissions in 

Denmark. Therefore, the sector will eventually face regulation dealing with the climate impact from 

the sector in the following years due to the national and international reduction targets. 

To reduce the Danish GHG emissions with 70 pct. by the year 2030, it is important to gain 

knowledge about the interaction between GHG emissions and economic performance in the 

agricultural sector. This knowledge can contribute as to how the GHG emissions from agriculture 

can be reduced at minimum cost, without lowering the productivity of the Danish agricultural sector 

significantly, so that the sector maintains its competitiveness on the international market.  

 

Currently, GHG emissions from the agricultural sector are only reported on an aggregated level. 

Therefore, it is only possible to impose indirect regulations - such as nitrate regulation or subsidies 

to environmental or climate actions - on the entire sector as a whole. By regulating the entire sector 

indirectly as a whole, the regulation cannot be designed in the most cost-efficient way (The Danish 

Council on Climate Change, 2016). Therefore, in order to pave the way for regulating the 

agricultural sector most cost-efficiently, the GHG emissions should optimally be estimated on farm 

level. Farm specific GHG emissions can be useful in order to detect the diversity across farms 

regarding the specific emissions and the costs of reducing them.  

 

The aim of this thesis is to develop an applied framework where GHG emissions are implemented 

in an economic benchmarking of the agricultural sector in order to calculate farm-specific 

abatement costs of reducing GHG emissions. In addition to estimating the farm-specific abatement 

costs, the empirical analysis defines the current improvement potential of reducing GHG emissions 

and/or increasing economic performance. This framework could provide a contribution to a possible 

future cost-efficient regulation of the agricultural sector, as it reveals the diversity in the cost of 

abating GHG emissions and thereby where abating GHG emissions is carried out at lowest cost. 

The empirical analysis of this thesis is carried out for Danish dairy farms in the year 2017. 

Nevertheless, the benchmarking framework could potentially be expanded to cover various parts of 

the agricultural sector.  

 

As data on GHG emissions on farm level is currently not existing, Part A of this thesis focuses on 

estimating these for Danish dairy farms to be able to include the estimated farm-specific GHG 
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emissions in the benchmarking model presented in Part B. Part A is therefore essential for being 

able to conduct the benchmarking analysis in part B. 

 

The empirical analysis in Part B concerns estimating a non-parametric benchmarking model with 

the assumption of weak disposability and including a directional distance function. This is done in 

order to be able to integrate an undesirable output (GHG emissions) in an economic efficiency 

analysis of the Danish dairy farms. The method used is a variation of the Data Envelopment 

Analysis (DEA) method first developed by Charnes et al. (1978).  

DEA is a non-parametric benchmarking method that firstly defines a performance standard and 

secondly evaluates the performance of Decision Making Units (DMUs), such as farms, relative to 

best practice (Bogetoft & Otto, 2011, p. 81). DEA is based on linear programming, creating an 

efficient frontier used as comparison for other DMUs to estimate their relative efficiency.   

It is becoming increasingly more common to also include undesirable outputs such as externalities 

from production in such benchmarking models. With an undesirable output, the estimated frontier 

can be used to derive frontier shadow prices of the undesirable output using the trade-off that occurs 

along the frontier. 

 

This thesis is structured as follows: 

Part A concerns estimating farm-specific GHG emissions for Danish dairy farms. The section 

covers the background for GHG emissions from the agricultural sector as well as the methodology 

for estimating GHG emissions from enteric fermentation and manure management using national 

and international guidelines. The results display the estimated GHG emissions which will be used 

in the benchmarking model in Part B. The estimated GHG emissions are validated by comparing 

them to national estimates.  

Part B concerns the benchmarking analysis of the dairy farms. This section consists of a 

background describing the concept of abatement costs as well as the basic method of Data 

Envelopment Analysis. The methodology section elaborates on the theory behind including an 

undesirable output in a benchmarking model. Furthermore, Part B contains a section presenting the 

empirical model, used in this thesis. The results from part B displays the abatement costs for both 

efficient and inefficient farms, as well as the existing potentials within the sector for improving both 

revenue and/or climate. Lastly, the results display which characteristics of the farms that are 

associated with low abatement costs of GHG emissions and higher efficiency.  
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In the Discussion and perspective for future research, the implication of the estimation of farm-

specific GHG emissions for the benchmarking model is discussed. Furthermore, it is discussed how 

the results can be used in future regulation, as well as how to improve the results through future 

research.   



 5 

Part A: Estimating farm-specific greenhouse gas emissions 

A.1 Background  

A.1.1 Greenhouse gases in the agricultural sector 

The total Danish GHG emissions have decreased from approximately 74 mill. tons CO2e in 1990 to 

approximately 51 mill. tons CO2e in 2017. This is including LULUCF and corresponds to a 

decrease of approximately 32 pct. The agricultural sector was the third largest source of GHG 

emissions in 2017. 

 

In 2017 the GHG emissions from the agricultural sector, excluding LULUCF, contributed to 22 pct. 

of the total emissions in Denmark. These are primarily due to livestock, where cattle are a 

particularly large source of the total emissions in the agricultural sector (DCE, 2019). The 

aggregated GHG emissions from the agricultural sector was approximately 11 mill. tons CO2e in 

2017 (excluding LULUCF). The emissions from the agricultural sector has decreased 16 pct. since 

1990, which is mainly due to a decrease in emissions of nitrous oxide (N2O). The reduction in N2O 

emissions are highly due to a derived effect of an increased focus on the aquatic environment (DCE, 

2019), such as the implementation of the EU’s Water framework Directive (2000/60/EC) (WFD). 

 

However, there are numerous sources of GHG emissions in the agricultural sector. Following DCE 

(2019), these cover the categories: 

 

• CH4 emissions from enteric fermentation  

• CH4 and N2O emissions from manure management 

• Direct and indirect N2O emissions from agricultural soils 

• CO2 emissions from liming, urea and other carbon-containing fertilizers 
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The distribution of the different greenhouse gases over time is displayed in Figure A.1-1.  

 
Figure A.1-1: Time-series of GHG emissions within the Danish agricultural sector 

 
Source: Authors construction, based on numbers from DCE (2019). 
Note: Greenhouse gas emissions from the agricultural sector also cover “Field burning of agricultural residues”, “Urea 
application” and “Other carbon-containing fertilizers”. However, as these two categories only represent 0,03, 0,04 and 
0,09 pct. respectively of the total emissions from 1990 to 2017, these are not included in the illustration. 

 

The figure shows the different GHG emissions in CO2 equivalents (CO2e), as the effect on global 

warming, from the different greenhouse gases listed above, are not directly comparable. The effect 

from the greenhouse gases can be compared by using their global warming potentials (GWP). The 

individual GWP of a greenhouse gas is dependent on the specific lifespan of the gas in the 

atmosphere. The GWP of a given GHG represents the effect on climate for this gas relative to the 

effect on climate from CO2 over a given time period, typically 100 years. To be able to compare 

these with each other, the different greenhouse gasses are converted into CO2 equivalents and 

referred to as greenhouse gas emissions. The GWP for methane is 25 and 298 for nitrous oxide. 

This means that 1 ton of methane corresponds to 25 CO2e and 1 ton of Nitrous Oxide corresponds 

to 298 tons CO2e. 

 

From Figure A.1-1, it can be seen that GHG emissions from enteric fermentation represent a large 

part of the aggregated emissions. Enteric fermentation is a digestive process, which is a process 

where carbohydrates are broken down to simple molecules that can be obtained in the blood of the 

livestock. Methane (CH4) is a byproduct of this process and the majority is primarily released as 
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burps and exhalation. The methane emissions from this process is dependent on factors such as the 

livestock’s individual digestive tract as well as the age, weight, activity level and the feed 

composition (IPCC, 2019). Ruminants, such as cattle, produce a higher level of methane from 

enteric fermentation compared to non-ruminant livestock such as pigs. Furthermore, the emission of 

methane from cattle is dependent on the milk productivity where a higher milk yield leads to 

increased methane emissions (IPCC, 2019). In 2017, dairy cattle contributed with 56 pct. of the 

overall GHG emissions stemming from enteric fermentation whereas non-dairy cattle contributed 

with 24 pct. cf. Figure A.1-2. 

 
Figure A.1-2: Sources of GHG emissions from enteric fermentation distributed for livestock categories 

  
Source: Authors construction, based on numbers from DCE (2019). 

 

Emissions from enteric fermentation have decreased slightly over the period from 1990-2017 as can 

be seen in Figure A.1-1. The reduction is mainly due to a decrease in the total number of dairy 

cattle (DCE, 2019). The methodological framework for estimating the methane emission from 

enteric fermentation is further explained in section A.3.1. 

 

From Figure A.1-1 it can be seen that GHG emissions from manure management also constitute a 

large part of the sectors aggregated emissions. The aggregated GHG emissions from manure 

management have been relatively stable over the period from 1990-2017 (cf. Figure A.1-1). 

Dairy Cattle
56%

Non-Dairy Cattle
24%

Swine
8%

Other 
livestock

12%
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The GHG emissions from manure management consist of two byproducts; methane (CH4) and 

Nitrous oxide (N2O).  

CH4 emissions from manure management is the methane released due to anaerobic processes when 

manure is managed and stored. The methane emissions depend on the amount of manure deposited, 

the number of animals and the handling of the manure, which is directly related to the housing 

system (IPCC, 2019). Swine is the livestock category which contributes mostly to the methane 

emissions related to manure management. Swine cover approximately 60 pct. of the total emissions. 

Cattle are the second largest contributors where dairy cattle contribute with 19 pct. and non-dairy 

with 17 pct. of the total emissions related to manure management. 

 

N2O emissions from manure management are related to the manure handling in housing and 

storage. Emissions related to manure deposited on agricultural soils are not measured as part of the 

manure management. These emissions are included in the category for agricultural soils and is 

thereby not included in the estimated GHG emissions from livestock categories such as cattle 

(DCE, 2019). As can be seen in Figure A.1-1, emission from agricultural represents a relative high 

share of the total GHG emissions from the agricultural sector as a whole. However, these emissions 

are not included in the empirical analysis, as GHG emissions from agricultural soils only represent 

a minor share of the GHG emissions from dairy farms.   

 

N2O from handling manure can be divided into indirect and direct N2O emissions. The direct 

emissions are emitted directly from handling manure, whereas the indirect N2O emissions are 

associated with the emissions of NH3 (ammonia) and NOX (nitrogen oxides) related to the manure 

handling. 

A.1.2 Farm-specific greenhouse gas emissions 

Farm-specific GHG emissions for the Danish agricultural sector, are not currently available. In the 

climate agreement made in June 2020 (The Danish Ministry of Finance, 2020), 5 mill. DKK have 

been set aside to develop climate accounting at farm level. The climate accounts will contribute to a 

more precise climate regulation of the Danish agricultural sector (The Ministry of Environment and 

food, 2020). Finding a method for properly estimating GHG emissions on farm level, as well as 
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implementing the data from the climate accounting in economic modelling is therefore more 

relevant than ever.  

 

There exist different sources describing how to estimate GHG emissions on both detailed and 

aggregated levels. The Intergovernmental Panel on Climate Change (IPPC) has developed a 

guidance for how to estimate GHG emissions on a national level (IPCC, 2019)l. This guidance is 

the generally applied methodology for estimating GHG emissions on sectoral level. Another 

approach to measure GHG emissions on a more disaggregated level is the Life Cycle Assessment 

(LCA). Nevertheless, this approach measures GHG emissions through the entire production chain 

and does therefore not distinguish between national and international emissions (The Danish 

Council on Climate Change, 2016). The IPPC guidelines only include inland emissions and are 

thereby more directly applicable to use in national regulation of climate. This is the case as the 

national reduction target is based on numbers for inland emissions. 

 

The overall emissions from different sectors are estimated by the Danish Center for Environment 

and Energy (DCE) in a National Inventory Report (DCE, 2019). The annual National Inventory 

Report for Denmark covers the national GHG emissions across different sectors. The report follows 

the general guidelines provided by IPCC. However, the guidelines are modified using national 

standards and methods where possible. The estimations of GHG emissions are aggregated for the 

relevant sectors and are thereby reported on a relatively undetailed level. 

 

The farm-specific GHG emissions are in this thesis also estimated using the IPPC guidelines (IPCC, 

2019, pp. 10.33-10.99). In order to obtain as precise estimates as possible, the IPCC guidelines have 

been modified by using national standards from various sources. These include: 

 

• The National Inventory Report (DCE, 2019) 

• The Danish Council on Climate Change – climate accounting on farm level (The Danish 

Council on Climate Change, 2016), 

• Norm figures for cattle (Lund & Aaes, 2016/2017) 

 

The Danish accounting on farm level, developed by the Danish Council on Climate Change, is a 

prototype tool to estimate the GHG emissions on farm level for a single farm (The Danish Council 
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on Climate Change, 2016). The tool is developed in order to provide a single farm with a tool to 

monitor the given GHG emissions from the specific farm. The tool is thereby not directly applicable 

as an instrument to estimate farm-specific data for a range of farms with the aim of executing 

analyses across a large dataset. Furthermore, the calculations of GHG emissions from cattle that 

originates from enteric fermentation, can be calculated more precisely than what the Danish 

Council on Climate Changes tool allows for today. The estimation of GHG emissions from enteric 

fermentation can thereby be done more detailed to obtain a higher variation across farms. 

However, in this thesis, parts of the calculations found in the tool provided by the Danish Council 

on Climate Change are used to calculate farm-specific GHG emissions from manure management. 

Given the current data availability, the standardized values provided by the Danish Council on 

Climate Change concerning manure management, still serves as the most detailed way of estimating 

GHG emissions from manure management. 
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A.2 Data  
The dataset for this analysis consist of data from the economic database Ø90 provided by SEGES, 

norm figures from Lund and Aaes (2016/2017), Poulsen (2017), IPPC (2019, pp. 10.33-10.90) and 

the National Inventory Report (DCE, 2019) and lastly of data from the fertilizer accounts provided 

by the Danish Agricultural Agency. 

 

The data from the economic database Ø90 is provided by SEGES and is obtained from the financial 

management and bookkeeping tool supplied by the branch-collaboration DLBR (Lillethorup, 2017). 

This data consists of accounting data reported by dairy farms in Denmark. It is voluntary to use the 

Ø90 management tools, so not all Danish dairy farms are represented in the database.  

 

For this thesis, only data from 2017 has been include. This is mainly due to the fact that the latest 

year present in the database is 2018, which was an extremely dry year in Denmark leading to an 

extraordinary decrease in the income for the Danish agricultural sector (The Danish Agriculture and 

Food Council, 2018). Thereby, 2018 is not found suitable for the analysis as this year might not be 

representative. Therefore, 2017 is the latest year, where the required data for this analysis is present, 

and is thereby used in the empirical analysis. The raw data from 2017 originally consist of 2.201 

observations. 

 

The data cleaning has been carried out following the methodology developed by Lillethorup (2017). 

The data cleaning help secures that the dataset is representative for the sector and only represents 

comparable farms by excluding potential outliers and misspecified data. Different criteria of which 

farms to excluded are made e.g. what makes a farm specialized in dairy production. Furthermore, 

the data cleaning ensures that only full-time farms are included in the sample and only farms with a 

minimum of 100 cattle are included. (Lillethorup, 2017)  

 

In this analysis, the amount of milk produced is used to estimate Greenhouse gas emissions. 

Therefore, farms with a milk production below 5.000 ECM (energy corrected milk) per dairy cattle 

per year, have been removed from the dataset. This has been carried out as 5.000 ECM is less than 

half of the average production of ECM per dairy cattle per year. Less than an average of 5.000 

ECM might be an unreasonable low production of ECM and can potentially lead to a smaller GHG 
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emission, thus making the farm an outlier in the efficiency analysis. 12 observations are removed 

due to this criterion.  

 

The data from the fertilizer accounts is provided by the Danish Agricultural Agency and gives 

information about which housing systems the different farms use for their cattle, which type of 

manure the cattle produces, and how many cattle is in each housing system on a given farm.  

 

The dataset from the economic database and from the fertilizer account have been combined for the 

analysis. Observations which are not present in both datasets have been removed from the sample. 

Table A.2-1 displays the distribution of the Danish population of cattle in 2017 and how many of 

these cattle that are included in the final sample.  

 
Table A.2-1: Distribution of cattle types in population and sample 

 

 

The final sample for the empirical analysis covers 292.088 dairy cattle in 2017, corresponding to 

approximately 51 pct. of the total number of Danish dairy cattle. Furthermore, data covers a total of 

1.254 specialized dairy farms, corresponding to approximately the same share of the population of 

dairy farms in Denmark. Of the 1.254 farms, 204 are categorized as organic farms whereas 1050 are 

categorized as conventional.  

  

Type Population Sample Share of population 

Dairy cattle 571.115 292.088 51 pct. 

Heifers (>6 months) 426.810 131.502 31 pct. 

Heifers (0-6 months) 161.788 66.237 41 pct. 

Bulls and studs (>6 months) 41.941 6.749 16 pct. 

Bulls (0-6 months) 124.221 15.193 12 pct. 
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A.3 Methodology 
The IPCC guidelines contain different approaches for estimating the GHG emissions, depending on 

the detail level of the analysis. The different levels range from the lowest Tier 1 to the highest Tier 

3 approach. Tier 1 represents the approach with the lowest level of details, primarily applying 

standardized values for the basic characterization of the different sources of emissions.  

Tier 2 contains a more detailed approach, making it possible to incorporate information on e.g. 

specific livestock subcategories or the diversity in feed intake. Furthermore, Tier 2 expands the Tier 

1 approach by applying country-specific estimates for the gross energy intake (𝐺𝐸) and the 

methane conversion factor (𝑌𝑚) for specific livestock categories (IPCC, 2019, p. 10.35).  

 

The highest Tier method, Tier 3, further expands the detail level beyond the diversity of the Tier 2 

approach. The IPCC do not provide comprehensive instructions on the Tier 3 method, but 

encourage country-specific improvements, where possible. This could include default values for 

e.g. the feed digestibility and the chemical composition of feed, leading to a higher diversity in the 

methane conversion factor. 

 

The estimation of GHG emissions in this thesis, is carried out using a mixture of the three Tiers.  

Given the data available for the estimation, the analysis is carried out as detailed as possible within 

the different sub-elements of both emissions from enteric fermentation and manure management. A 

higher detail-level, than what is currently available, will depend on data being reported on a highly 

disaggregated level from farms.  

 

The aggregated GHG emissions from each farm are calculated by applying the specific emission 

factors related to enteric fermentation and manure management with the number of cattle within 

each subcategory for all farms in the dataset. The CH4 emissions for enteric fermentation vary 

across each farm, according to characteristics such as the breed, composition of cattle, fat and 

protein content in the milk and the milk yield. 

CH4 emission factors related to enteric fermentation (𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡) are only estimated specifically for 

dairy cattle and do not vary across breed and activity level for non-dairy cattle as norm figures are 

used for the emission factors of these. 
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The CH4 and N2O emissions for manure management varies across breed, composition of cattle and 

the specific housing type for each of the farms in the dataset.  

 

The methodology provided by IPPC concerns estimating the emission factors for a specific 

livestock. Nevertheless, as data is on farm level, the emission factors in this thesis, are estimated as 

an average emission factor for a specific farm. The farm-specific emission factor for e.g. dairy 

cattle will thereby represent the emission factor of the average dairy cattle on the specific farm. 

 

IPCC’s framework involves estimating emission factors relating to the individual livestock and 

thereafter aggregating the total emissions by multiplying the emission factors with the total number 

of livestock within the specific category. The method is originally developed to estimate emissions 

on a national level, taking a countries total number of livestock into account.  

In the GHG estimation of this report, the method for estimating emissions is adjusted and applied to 

individual dairy farms in Denmark in order to estimate the GHG emissions from dairy cattle.  

 

The following sections describe the methodology for calculating farm-specific emission factors for 

CH4 related to enteric fermentation and manure management respectively and emission factors for 

N2O related to manure management for different types of cattle. 

A.3.1 Enteric fermentation 

The emissions related to enteric fermentation is the greenhouse gas, methane (𝐶𝐻4). The amount of 

methane stemming from enteric fermentation is dependent on a range of determinants, hereunder 

the age and weight of the dairy cattle, along with the quality and quantity of the feed (IPCC, 2019, 

p. 10.33).  

 

Figure A.3-1 displays an overview of the method for calculating the emission factors of CH4 

associated with enteric fermentation (𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡). 𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡 is calculated by using the gross energy 

intake (GE) of the individual dairy cattle. GE varies across the individual cattle according to factors 

such as the general activity level as well as the lactating and growth of the cattle.  
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Figure A.3-1: Overview of equations used in the calculating of 𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡 

 
Source: Authors construction, based on theoretical framework from IPCC (2019). 

 

The following section covers the estimation of 𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡, hereunder GE as well as the net energy 

requirements that goes into the calculation of GE.  

 

The Methane emission factors from enteric fermentation for dairy cattle (𝑬𝑭𝑪𝑯𝟒,𝑬𝒏𝒕) are 

calculated according to equation A.3-1. Equation A.3-1 converts the gross energy intake of each 

dairy cattle into an emission factor, expressing how many kilos of methane is emitted from the 

individual dairy cattle per year. 

 

The methane conversion factor, Ym, represents the fraction of GE that is converted into methane in 

the process of enteric fermentation. The country specific Ym is estimated to be 6 pct. for dairy cattle 

in Denmark according to the Danish national inventory report by DCE (2019). This implies that on 

average, 6 pct. of the gross energy intake from feed is converted into methane for cattle in 

Denmark.  

(𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡).=
𝐺𝐸 ∗ 𝑌𝑚100 ∗ 365

55,65
 

 

A.3-1 
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The factor 55,65 represents the energy content of methane measured in MJ/kg CH4 (IPCC, 2019, p. 

10.46). The numerator of equation A.3-1 is expressed as energy in MJ, where the denominator is 

used to expressed the emission factor in kg. methane (CH4). 

 

The gross energy intake in MJ per day per cattle (GE) is the total energy need for cattle. This 

covers the net energy required for maintenance, activity, lactating processes, pregnancy and growth, 

taking the availability of energy in feed (REM and REG) as well as the digestibility of the feed 

(DE) into account (IPCC, 2019, p. 10.29). 

GE is calculated according to equation A.3-2. 

 

 

𝐺𝐸 =

𝑁𝐸𝑚 +𝑁𝐸𝑎 + 𝑁𝐸𝑙 + 𝑁𝐸𝑝
𝑅𝐸𝑀 +

𝑁𝐸𝑔
𝑅𝐸𝐺  

𝐷𝐸
100

 A.3-2 

Where: 

GE = Gross energy, MJ per day 

NEm= Net energy required by the animal for maintenance, MJ per day 

NEa = Net energy for animal activity, MJ per day 

NEl = Net energy required for lactation, MJ per day 

NEwork = Net energy for work, MJ per day 

Nep = Net energy required for pregnancy, MJ per day 

NEg = Net energy needed for growth, MJ per day 

REM = Ratio of net energy available in a diet for maintenance to digestible energy consumed 

REG = Ratio of net energy available for growth in a diet to digestible energy consumed 

DE% = Digestible energy expressed as a percentage of gross energy 

 

The digestibility of feed (DE) is given as the fraction of gross energy that is used for the digestion 

process. In the estimation of GHG, the IPCC default value for Western Europe of 71 pct. is applied 

for DE. A standard value of 71 pct. for DE is generally used in the context of determining gross 

energy from cattle in a Danish context (see e.g. Lund & Aaes (2016/2017)).  

 

The net energy requirements for maintenance, activity, lactating, pregnancy and growth 

respectively, are calculated separately following equations A.3-3-A.3-7. 

 

𝑁𝐸𝑚 = 𝐶𝑓𝑖 ∗ (𝑊𝑒𝑖𝑔ℎ𝑡)0,75 A.3-3 



 17 

 

𝐍𝐄𝐦 represents the net energy required for maintenance in MJ per day i.e. the net energy 

required to keep a stable weight without neither weight gains nor losses. 𝑁𝐸𝑚 is calculated 

according to equation A.3-3, using the weight of the cattle and a coefficient determining the energy 

required for maintenance per kilo metabolic weight. The metabolic weight is calculated as the 

weight raised to the power of 0,75 and is used as the net energy is only required to maintain the 

active tissue of the cattle.  

 

The coefficient, 𝐶𝑓𝑖, is the energy need in MJ per day per kg metabolic weight for cattle. 𝐶𝑓𝑖 varies 

according to the livestock category. The IPCC default value for dairy cattle is 0,386 (table 10.4) 

(IPCC, 2019). However, in a Danish context, the Institute of Animal Science at Aarhus University 

applies a value of 0,293, developed specifically for Nordic countries (Volden, 2011). A value of 

𝐶𝑓𝑖 for cattle of 0,293 is therefore also applied in this estimation.  

 

The data for this estimation does not contain specific information regarding the weight of the cattle 

on each individual farm. It is thereby not possible to vary the net energy required for maintenance 

based on actual data for the respective farms. Standard values for the average weight of dairy cattle, 

varying across breed, are thereby applied in the empirical analysis. Data for the average weight of 

dairy cattle is obtained from the normative figures developed by the Institute of Animal Science at 

Aarhus University (Lund & Aaes, 2016/2017). These can be seen in Appendix A. The variables are 

diversified according to whether the herd is heavy breed, jersey or mixed breed.  

In the data provided by SEGES, it is not possible to detect the exact composition of breeds for 

farms categorized as mixed breed. The mix between heavy breed and Jersey are in these cases based 

on the composition of these types of breeds provided by the fertilizer accounts from the Danish 

Agricultural Agency. A similar approach is used when calculating the emissions from manure 

management in section 0. 

 

𝑁𝐸𝑎 = 𝐶𝑎 ∗ 𝑁𝐸𝑚 
 

A.3-4 

𝐍𝐄𝐚 is the net energy required for activity in MJ per day, which is linked to the feeding 

situation on each individual farm as the feeding situation affects the activity level of cattle. 
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𝐶𝑎 is determined by whether the dairy cattle are fed in stalls or on pasture lands. The coefficient is 

determined by an IPCC default value of 0 for dairy cattle in stalls and 0,17 for pasture land (IPCC, 

2019, p. 10.24). The coefficient covers the fact that dairy cattle use little or no energy to feed in 

stalls and modest energy to feed on pasture land.1 

 

Following standard assumptions from the Danish National Inventory Reports, all cattle are assumed 

to spend an average of 18 days on pasture land during a year. This number is as well implemented 

in the tool developed by the Danish Council on Climate Change. The days spend on pasture land for 

dairy cattle, will in reality differ considerably across each farm. However, as data is not available on 

farm level, it will not be possible to estimate a precise number of days for each farm. The standard 

number of 18 days from the National Inventory Report is applied to ensure consistency in the 

calculations of the net energy required for activity across all farms. Furthermore, the average of 18 

days on grass for dairy cattle is consistent with the assumptions used in the calculations of methane 

emissions from manure management in section A.3.2.1. 

 

𝑁𝐸𝑙 = 𝑀𝑖𝑙𝑘 ∗ (1,47 + 0,40 ∗ 𝐹𝑎𝑡) A.3-5 

 

𝐍𝐄𝐥 is the net energy required for lactating. 𝑁𝐸𝑙 is determined by the amount of milk produced 

as well as the fat content of the milk. A higher fat content implies a higher net energy required for 

lactating. The net energy required for lactating is calculated according to equation A.3-5.  

 

𝑁𝐸𝑝 = 𝐶𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 ∗ 𝑁𝐸𝑚 A.3-6 

 

𝐍𝐄𝐩 is the net energy required for pregnancy in MJ per day. 𝑁𝐸𝑝 is calculated according to 

equation A.3-6. The pregnancy coefficient 𝐶𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 has an IPCC default value for dairy cattle of 

0,1, implying that pregnancy requires 10 pct. additional net energy for cattle relative to the net 

energy required for maintenance. 

 
1 The category pasture land covers livestock fed in restricted areas. IPCC also provide a default value for livestock on large grazing 

areas, where significant energy is required to feed. However, this coefficient is not relevant for the empirical analysis, as it covers 

open range land or hilly terrain which is not present in the Danish agricultural sector. 
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The gestation period for cows is 284 days (Volden, 2011) corresponding to 78 pct. of a year. 

Furthermore, it is assumed that all cows give birth to an average of 0,6 calves a year (Lund & Aaes, 

2016/2017). This means that in average 60 pct. of the dairy cows on a farm give birth every year. 

This correspond to a situation where every cow in the herd is pregnant an average of 47 pct. (78 pct. 

× 60 pct.) of the days in a year. 

 

When aggregating the emission factors across the individual herd of the farms, the net energy 

required for pregnancy in MJ per day is thereby only included for 47 pct. of the days in one year. 

This corresponds to multiplying 𝑁𝐸𝑃 with 47 pct. when computing the Gross energy intake (GE). 

 

𝑁𝐸𝑔 = 22,02 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡
𝐶 ∗ 𝑀𝑊

)
0,75

∗ 𝑊𝐺1,097 

 
A.3-7 

𝐍𝐄𝐠 is the net energy required for growth in MJ per day. The net energy required for growth 

takes the weight and mature weight (𝑀𝑊) of the cattle as well as the average daily weight gain 

(𝑊𝐺) into account. 

As data for the weight and weight gain of the herd is not available at farm level, standard numbers 

from Lund & Aaes (2016/2017) are used in the empirical analysis for the three weight variables 

corrected for the mixture of breed in a specific farm (cf. Appendix A).  

The coefficient C is dependent on whether the NEg is estimated for dairy cattle, heifers, bulls or 

studs, having a lower value for female cattle than male cattle. According to IPPC the coefficient C 

takes the value 0,8 as the estimation is for dairy cattle (IPCC, 2019, p. 10.25). 

In cases where NEg is estimated for nondairy the value for C should vary according to cattle type. 

 

REG is the amount of net energy available for growth relative to the total digestible energy 

consumed. REG is calculated according to equation A.3-8. 

 

𝑅𝐸𝐺 = 1,164 − (5,16 ∗ 10−3 ∗ 𝐷𝐸) + (1,308 ∗ 10−5 ∗ (𝐷𝐸)2) − (
37,4
𝐷𝐸

) 

 
A.3-8 

REM is the amount of net energy available for maintenance, activity, lactating and pregnancy 

relative to the total digestible energy consumed. REM is calculated according to equation A.3-9. 
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𝑅𝐸𝑀 = 1,123 − (4,092 ∗ 10−3 ∗ 𝐷𝐸) + (1,126 ∗ 10−5 ∗ (𝐷𝐸)2) − (
25,4
𝐷𝐸

) 
A.3-9 

 

 

After estimating the farm-specific methane emission factors for dairy cattle related to enteric 

fermentation (𝐸𝐹𝐶𝐻4,𝐸𝑛𝑡), these are converted in to CO2e by using the GWP of methane. These 

emissions are then multiplied with the number of dairy cattle on the farms in order to obtain the 

aggregated GHG emissions for each farm. 

A.3.2 Manure management 

The emissions from manure management can be divided into two parts: methane (CH4) emissions 

and nitrous oxide (N2O) emissions. The emissions from manure management varies across the type 

of cattle, breed and housing system. The breed is either defined as heavy, jersey or mixed. The 

composition between heavy breed and jersey cattle for farms with mixed breed is based on the 

composition from the fertilizer accounts following the same procedure as the calculations of GHG 

emissions from enteric fermentation. 

 

It should be noted that it is possible for a single farm to operate with different housing systems for 

their herd of dairy cattle. This has been taken into account in the calculations of the GHG emissions 

from manure, such that the emissions for each farm is based on the number of cattle in each housing 

system.   

The data on the housing systems were for this thesis only provided for dairy cattle, and therefore it 

is assumed that non-dairy cattle at the same farm have the same housing system as the dairy cattle. 

However, it is assumed that calves up to six months lives in deep litter housing systems.  

 

A.3.2.1 Methane emissions 
Figure A.3-2 displays an overview of the equations and variables used to calculate the methane 

emission factor related to manure management (𝐸𝐹𝐶𝐻4,𝑚𝑎𝑛) for a specific type of cattle. The 

emission factor consists of two parts; methane emitted in the stable, and methane emitted from time 

spend on grass.  
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Figure A.3-2: Overview of equations used in the calculation of 𝐸𝐹𝐶𝐻4,𝑚𝑎𝑛 

 
Source: Authors construction, based on theoretical framework from IPCC (2019). 

 
Where:  

VS = volatile solids, kg per animal per year 

M = amount of manure excreted, kg per animal per year 

S = amount of deep litter, kg per animal per year 

DM = dry matter of M manure or S straw, % 

VSDM = volatile solids of dry matter, % 

g1 = feeding days on grass, days per year 

g2 = actual days on grass, days per year 

s = amount of straw, kg per animal per year 

% ash = ash content in straw 

 

The emission factors from both time spend in stable and on grass depends on the methane 

conversion factor (MCF) times the maximum methane producing capacity (𝛽0) and a density factor 

for 𝐶𝐻4 (0,67). The methane conversion factor is the share of the maximum amount of methane that 

diffuses under certain circumstances depended on temperature and how the manure is stored. In 

Denmark the MCF is relatively small, as the average temperature is relatively low. The MCF varies 

between different type of cattle, breeds and housing systems. The methane conversion factor used 

in these calculations are specific values from Denmark (2017) and are given by the standard norm 

tables from DCE (2019) (Annex 3D-15). 𝛽0 varies between the type of cattle and are given by the 

IPPC guidelines (2019, p. 10.66) (table 10.16). Lastly, the methane emission factors from manure 

management depend on the volatile solids for respectively housing (𝑉𝑆𝑠𝑡𝑎𝑏𝑙𝑒) and grassing 

(𝑉𝑆𝑔𝑟𝑎𝑠𝑠), which will be further explained in the following. 

 

The volatile solids are created from the manure. These are emitted both in the stable and on 

pastureland. However, the emissions of volatile solids in the stable are dependent on the amount of 

manure and the amount of deep litter from a stable. Furthermore, the emissions of volatile solids 
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from stable are dependent on the days the cattle spend in the stable. The emissions of volatile solids 

in the stable are dependent on the dry matter content in manure and straw. The volatile solids from 

grass are only estimated for feeding days on grass and do thereby not include the volatile solids 

created from deep litter.  

The volatile solids are based on national specific data for Denmark and vary across housing type 

and type of cattle for each farm.  

 

The ash content for straws are assumed to be 4,5 pct. (DCE, 2019) and days on grass are assumed to 

be 18 for all type of cattle besides heifers, who has 132 days on grass (DCE, 2019). A value of 80 

pct. volatile solids of dry matter are used in line with the DCE standard normative tables (2019).  

 

A.3.2.2 Nitrous oxide emissions 
Figure A.3-3 displays an overview of the calculation of N2O emissions related to manure 

management. The total emission of N2O from manure management consist of direct (𝑁2𝑂𝐷,𝑚𝑎𝑛) 

and indirect N2O (𝑁2𝑂𝐼,𝑚𝑎𝑛) emission, shown in the figure below. 

 
Figure A.3-3: Overview of equations used in the calculation of 𝐸𝐹𝑁2𝑂,𝑚𝑎𝑛 

 
Source: Authors construction, based on theoretical framework from IPCC (2019). 

Where: 

S: Management system 

T: Cattle type 

NexT: Annual excretion of N per cattle type T per year expressed in N2O-N 

EF(3)s: Emission factor for direct emissions in given manure management system 

44/28: Conversion factor from N2O-N emissions to N2O emissions 

Nvolatilization, mms: Annual N lost as volatilization of NH3 and NOx measured in kg. N 

EF4(s): Emission factor volatilized nitrous oxide from agricultural soils  

Fracgas: % of nitrogen that volatilize as NH3 and NOx  

 

The direct N2O emissions consist of a measure of annual excretion of N (kg.) per year for cattle 

(Nex). The value used in this estimation is from the standard norm tables estimated by Poulsen 

(2017) and is country specific for Denmark. Nex varies across cattle types, housing systems and 
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breeds. Lastly an emission factor (EF4) (kg N2O-N per. kg, Nex) is multiplied with the annual 

excretion of N expressed as N2O-N. In order to transform this into N2O the conversion factor is 

used. The emission factor various across different housing systems and is a standard value from 

IPCC (2019) (table 10.21) following the same procedure as the National Inventory Report.  

 

The indirect N2O emissions are the amount of NOx and NH3 that is volatilized from the manure 

management system measured in kg. nitrogen (N). This is multiplied with an emission factor for the 

volatilization of N and is converted by the value 28/44 to measure it in N2O. The emission factor is 

a standard value from IPPC (2019, p. 10.90) (table 10.21) and is the same value as used in the 

National Inventory Report.  

 

The Nitrogen volatilization is calculated as the annual excretion of N per cattle per year times the 

percentage share of nitrogen that volatilize as NH3 and NOx in a given manure management system. 

 

The two different emission factors for methane and nitrous oxide respectively found above varies 

across manure management system and cattle types. Each of these different factors have been 

converted into CO2e and been multiplied with the specific number of a cattle type living in a 

specific housing system. These are then aggregated to calculate the total GHG emissions for a 

specific farm expressed in CO2e.  
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A.4 Results 
In this section the aggregated emission factors across farms are represented for both enteric 

fermentation, manure management and in total. Firstly, the results from enteric fermentation are 

presented, secondly the results from manure management and lastly the total aggregated GHG 

emissions from the farms consisting of both is presented. 

A.4.1 Emission factors for enteric fermentation 

The emission factors for dairy cattle vary across farms according to the individual variation of gross 

energy intake (GE) for the average dairy cattle on a given farm. In order to obtain the aggregated 

methane emissions for the total number of dairy cattle of each individual farm, the methane 

emission factors (𝐸𝐹𝐶𝐻4,𝑒𝑛𝑡) for each subcategory of cattle is multiplied with the farms number of 

dairy cattle.  

A summary of 𝐸𝐹𝐶𝐻4,𝑒𝑛𝑡 for dairy cattle is shown in Table A.4-1. 

 
Table A.4-1: Summary of estimated 𝐸𝐹𝐶𝐻4,𝑒𝑛𝑡 for dairy cattle 

Breed Min Q1 Mean Q3 Max. Sd 

Heavy 101,95 147,39 155,88 164,59 216,95 13,28 

Jersey 102,28 124,26 129,20 134,95 146,42 8,36 

Mixed 116,86 147,93 155,85 164,55 191,50 14,22 

 

There are differences in emission factors across the three types of breed presented in Table A.4-1. 

Farms with dairy cattle of heavy breed have on average a higher emission factor for methane related 

to enteric fermentation relative to farms with jersey cattle. This is as expected, as dairy cattle of 

heavy breed are in general larger animals with a higher milk yield which drives the emission factors 

upwards. For farms with a mixture of heavy breed and jersey, the emission factors are in general 

relatively similar to those for farms with only heavy breed. This is caused by the fact that the mixed 

farms tend to have a relatively low share of jersey cattle in general.  

 

The emission factors for methane related to enteric fermentation have only been estimated for dairy 

cattle. For the other subcategories: bulls, heifers, studs and calves, emission factors from norm 

tables have been used (table 5.7) (DCE, 2019). This is done as specific data for non-dairy cattle 
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were not available for the analysis. Nevertheless, non-dairy cattle represent a relatively small share 

of the sample. Furthermore, the emission factors for non-dairy cattle are generally significantly 

smaller than for dairy cattle. As the aggregated emissions from non-dairy cattle only represents a 

relatively small part of the total GHG emissions from enteric fermentation it is assessed not to 

impact the overall results significantly. 

 

As norm figures are used for the emission factors for the subgroups of non-dairy cattle, these will 

not vary according to breed and general activity level on the specific farm. The emission factors for 

the subcategories of nondairy cattle are shown in Table A.4-2. Nevertheless, the calculation 

methods and assumptions behind the estimation of emission factors for nondairy cattle are similar 

to those applied for the estimation of emission factors for dairy cattle in this analysis, as both 

methods are based on the national normative values as well as the IPCC guidelines.  

 
Table A.4-2: 𝐸𝐹𝐶𝐻4,𝑒𝑛𝑡  for non-dairy cattle  

Cattle type Emission factor (kg. CH4 /head/ year) 

Heifers (>6 months) 55,51 

Heifer (0-6 months) 43,62 

Bulls and studs (>6 months) 21,38 

Bulls (0-6 months) 13,05 

Source: DCE (2019) (table 5.7) 

A.4.2 Emission factors from manure management 

The estimated emission factors from manure management are shown in Table A.4-3. The table only 

contains emission factors from dairy cattle, but these also varies across different types of non-dairy 

cattle (see Appendix A). The N2O emission factors represent the sum of indirect and direct 

emissions. In order to aggregate the methane emissions factors (EFCH4,man) and the nitrous oxide  

emission factors (EFN2O,man), the emissions should be converted into CO₂e as they are presented in 

different units.  
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Table A.4-3: Estimated 𝐸𝐹𝐶𝐻4,𝑚𝑎𝑛 𝑎𝑛𝑑 𝐸𝐹𝑁2𝑂,𝑚𝑎𝑛 across stable systems for dairy cattle 

Housing systems 
Share of dairy 

cattle 

N2O Emission factor  

EFCH4,man 

(kg N2O catle-1 year-1) 

CH4 Emission factor  

EFN2O,man 

(kg CH4 catle-1 year-1) 

  Heavy breed Jersey Heavy breed Jersey 

Tethered with urine and solid manure 0,2 pct. 1,195 0,993 11,702 8,749 

Tethered with slurry 0,9 pct. 1,328 1,103 27,908 19,899 

Loose-holding with beds, solid floor 15,6 pct. 1,232 1,023 23,377 18,133 

Loose-holding with beds, slatted floor 23,8 pct. 1,280 1,063 23,377 18,133 

Loose-holding with beds, slatted floor, scrape 48,9 pct. 1,256 1,043 23,377 18,133 

Loose-holding with beds, solid floor with tilt 3,9 pct. 1,304 1,083 23,377 18,133 

Deep litter (all) 3,2 pct. 2,638 2,192 118,980 98,728 

Deep litter, long eating space, solid floor 0,6 pct. 2,145 1,492 97,912 79,124 

Deep litter, slatted floor 1,1 pct. 2,164 1,522 97,912 79,124 

Deep litter, slatted floor, scrape 1,8 pct. 2,155 1,507 97,912 79,124 

 

The table illustrates the difference in emission factors, which are primarily determined by the 

manure management system which is primarily given by the housing system. The most frequently 

used housing system in the sample is different loose-holding with beds, as they represent 

approximately 88 pct. of the sample. These type of housing systems emit less CH4 and N2O in 

relation to deep litter systems, which are mostly used for calves. 

A.4.3 Aggregated GHG emissions from enteric fermentation and manure 
management 

In order to estimate the aggregated GHG emissions across enteric fermentation and manure 

management, the emission factors are converted into CO₂e to ensure comparability. Emission 

factors are thereafter multiplied with the corresponding number of dairy and non-dairy cattle for 

each subcategory on the specific farm to obtain the total GHG emissions at farm level. 

 

Figure A.4-1 contains an overview of the total GHG emissions for each farm in the dataset, 

measured in CO₂e.  
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Figure A.4-1: Composition of GHG emissions for each farm in the dataset (CO2e) 

 
The figure illustrates the estimated contribution from enteric fermentation and manure management 

respectively to the total GHG emission of each farm in the dataset. Not surprisingly, CH4 emissions 

from enteric fermentation represents the majority of the GHG emissions for all farms. These are 

followed by CH4 emissions from manure management, where N2O emissions from manure 

management represents the smallest share of the total GHG emissions. 

 

The composition of the three sources of GHG for cattle, should according to both DCE (2019) and 

Mikkelsen (2020) be approximately 76 pct. CH4 emissions related to enteric fermentation, 15 pct. 

CH4 emissions related to manure management and the remaining 9 pct. N2O emissions from manure 

management. This is relatively in line with what is found in this empirical analysis as illustrated in 

the figure above. The specific composition of the sources of greenhouse gas emissions vary to some 

extend between the farms. Nevertheless, the composition is relatively homogenous for the majority 

of the sample. It is also shown how a few farms have relatively large aggregated greenhouse gas 

emissions compared to the majority of the sample. 

 

The total GHG emissions are highly dependent on the number of cattle for each farm. The 

relationship between total GHG emissions and the number of cattle is illustrated in Figure A.4-2.  
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The figure illustrates a relatively high correlation between total GHG emissions and the number of 

cattle, as expected. However, it can also be seen that there is some variation in the total GHG 

emissions for farms with similar number of cattle. Furthermore, it is seen that a handful of farms 

differs from the rest, by having a relatively large number of cattle and correspondingly high 

aggregated GHG emissions. 

 
Figure A.4-2: Correlation between total GHG emissions and number of cattle 

 
The aggregated GHG emissions across the total sample are presented in Table A.4-4 both expressed 

in CH4, N2O as well as in CO2e.  

The overall GHG emissions used in the following benchmarking analysis in Part B consists of an 

aggregation of the three components listed in the table below.  

 
Table A.4-4: Summary of estimated GHG emissions across all farms 

 
Emissions from 

enteric fermentation 
Emissions from manure management 

Aggregated GHG 

emissions 

 CH4 CO2e CH4 CO2e N2O CO2e CO2e 

Aggregated GHG 

emissions (tons) 

57.011 1.425.270  9.553 238.822 474 141.246  1.805.338 

(100 pct.) (78,9 pct.) (13,3 pct.) (7,8 pct.) 
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A.5 Validation of the estimated GHG emissions 
 

In order to validate the estimated GHG emissions from enteric fermentation and manure 

management, the aggregated emissions are compared to those from the Danish National Inventory 

report. The sample in the empirical analysis might not be directly representative of the population 

of dairy cattle on all measures. Therefore, the share of the population of dairy cattle from the 

sample might not represent the exact same share of the total estimated GHG emissions from the 

National Inventory Reports. However, comparing the estimated GHG emissions from the sample to 

the corresponding share of total GHG emissions from the National Inventory Report can be a guide 

as to whether the estimated emissions are consistent with the national estimations.  

Furthermore, in the process of calculating CH4 emissions from enteric fermentation, calculations of 

sub elements such as the net energy requirements have been compared to standard numbers used in 

the National Inventory report from Lund & Aaes (2016/2017) to ensure validity of the estimation.  

 

The results are only presented for dairy cattle in the specific validation of emissions from enteric 

fermentation and manure management. Non-dairy cattle are estimated to only contribute with 

approximately 18 pct. of the aggregated estimated emissions and are not the dominant type of cattle 

for the dairy farms in the empirical analysis. Specific validation for the subcategories of non-dairy 

cattle are thereby not presented in the same way as for dairy cattle but is included in the validation 

of the final aggregated GHG emissions.  

 

The gross energy intake (GE) of dairy cattle is the determinant factor for the estimation of the CH4 

emission factors for enteric fermentation (𝐸𝐹𝐶𝐻4,𝑒𝑛𝑡). Therefore, the purpose of the following is to 

validate that the estimated gross energy intake for the dairy cattle in the sample are in line with the 

national estimations. 

 
Table A.5-1: Estimated average GE for dairy cattle compared to national estimates  

Gross Energy intake (MJ per 

head per year) 
Heavy breed Jersey Mixed breed 

National Inventory report 

Average from own estimation 

401,9 334,9 392,2 

411,2 328,3 396 
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Table A.5-1 shows a comparison of the estimated average gross energy intake (GE) and the national 

estimates from the National Inventory Report. This shows that the estimations of GE are on average 

relatively similar to those estimated on a national level. 

Figure A.5-1 contains an overview of the distribution for the estimated GE for dairy cattle across 

different breeds. It can be seen that for all three types of breeds, the estimated GE tends to be rather 

normally distributed around the average GE. This implies that GE is, throughout the sample, is 

estimated relatively similar to what could be expected.  

 
Figure A.5-1: Distribution of estimated GE for dairy cattle across breeds  

 
Note: The range of the y-axes varies across the three plots as heavy breed represents the largest share of the sample.   

 

In order to validate the overall emissions from both enteric fermentation and manure management, 

the estimated GHG emissions from the two categories are compared to the corresponding national 

estimations. 

 

According to the National Inventory Reports, enteric fermentation accounts for 35 pct. of the total 

emissions in the agricultural sector in 2017, corresponding to 3,731 mill. tons CO2e. Of these, 

dairy-cattle in particular contributes with a total of approximately 2,268 mill. tons CO2e (DCE, 

2019). 
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The sample used in this thesis, includes approximately 51pct. of the total population of dairy cattle 

in Denmark for the year 2017. Comparing this to the estimations from the national inventory report, 

51 pct. of the total greenhouse gas emissions from enteric fermentation for dairy cattle corresponds 

to 1,157 mill. tons CO2e. In comparison, the total CO2e emissions stemming from enteric 

fermentation estimated in this thesis, are estimated to be 1,162 mill. tons CO2e in 2017 across all 

farms in the sample. This shows that overall, the aggregated GHG emissions from enteric 

fermentation are estimated in line with what is estimated on a national level. 

 

In 2017 CH4 emissions from manure management contributed with a total of 1,812 mill. tons CO₂e 

following the National inventory report. CH4 from Manure management accounts for approximately 

17 pct. of the total CO2e emissions in the agricultural sector, where 20 pct. of these emissions 

originate from dairy cattle in 2017. Thus, the total emissions from manure management stemming 

from dairy cattle is estimated by the DCE (2019) to be 0,348 mill. tons CO2e for 2017. 51 pct. of 

this corresponds to 0,178 mill. tons CO2e. In comparison, the total CO2e emissions stemming from 

manure management, are estimated to be 0,21 mill. tons CO2e in 2017 across all farms in the 

sample. 

 

CH4 emissions from manure management thereby seems to be slightly overestimated in the thesis 

compared to the numbers estimated on national level in the national inventories. However, it might 

not be the case that the 51 pct. of the population of dairy cattle, which are represented in the sample, 

corresponds to 51 pct. of the total emissions. Furthermore, CH4 from manure management 

contribute less to the total GHG emissions from dairy cattle compared to emissions stemming from 

enteric fermentation. The consequences for the aggregated GHG emissions are thereby not 

necessarily substantial for the final estimations even if the CH4 emissions are slightly 

overestimated. 

 

 N2O emissions cover both direct and indirect emissions. Data, for the emissions of N2O stemming 

from dairy cattle, is not directly extractable from the National inventory reports. Therefore, 

emissions from 2018 estimated by Mikkelsen (2020) is used in the comparison of the N2O 

emissions from manure management. Numbers from 2018 might deviate from 2017 estimations but 

are still assumed to be relatively comparable with the estimations from the empirical analysis. 
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The aggregated N2O emissions from dairy cattle are estimated to be 750 tons N2O by Mikkelsen 

(2020), corresponding to 223.500 tons CO₂e. As the sample in the empirical analysis covers 

approximately 51 pct. of the Danish population of dairy cattle, emissions from this share of the total 

number of dairy cattle corresponds to approximately 114.306 tons CO₂e.  

In the empirical analysis, the total N2O emissions from dairy cattle are estimated to be 114.625 

CO₂e which is very close to the corresponding estimation by Mikkelsen (2020). 
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B. Part B: Benchmarking analysis  
 

B.1 Background  
 

According to the Danish Council on Climate Change, among others, there exist a need for a tool 

which creates the best possible conditions for a cost-efficient climate regulation. To ensure the 

effectiveness of any future regulation it is necessary to thoroughly consider and develop methods 

which do not neglect the interaction between GHG emissions and economic performance. It is in 

general assumed that it is costly to reduce GHG emissions. Therefore, it is assumed that there exists 

a trade-off where increasing the climate performance will lead to lower economic performance. 

However, the trade-off might not be similar throughout an entire sector and may vary from 

producer to producer. A cost-efficient regulation of climate in the agricultural sector must thereby 

take this into account as it paves the way to legislate such that GHG emissions are reduced at 

minimum cost i.e. at an optimal trade-off between climate and economic performance. 

 

GHG emissions can be considered as an undesirable output in the production of dairy products. 

Currently, GHG emissions occur as a negative externality in the production as the emissions are 

costless for the farm but bares a cost to society. 

Externalities is in economic literature referred to as a spillover effect from a production. A negative 

externality will thereby affect either other firms’ production or people’s utility level negatively 

(Sørensen, et al., 2016). The producer itself, does not bear the cost of the externality and will 

thereby not act according to the actual socioeconomic cost of the negative externality. In order to 

ensure that producers act in a socioeconomic optimal way, the externality must therefore be 

internalized. Internalizing an externality means that the socioeconomic cost is included in the 

incurred cost of the producer which could be done by e.g. taxing the externality according to the 

socioeconomic cost.  

 

GHG emissions in the Danish dairy production have an additional cost to society, which the farm 

does not incur. The additional cost for society of emitting one more unit of GHG is in economic 

theory referred to as the marginal damage cost (Kolstad, 2011, pp. 234-251). If a farm reduces its 

GHG emissions with one ton, the marginal benefit for society will thereby be that the marginal 
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damage of that unit has been avoided. The marginal abatement cost of reducing this ton of GHG 

emissions for the farm must be equal to the marginal benefit for society in order to ensure a 

socioeconomic optimal production.  

 

Both the marginal abatement cost and the marginal benefit to society is not observed directly. These 

can be very difficult to measure, and the measures will often be uncertain. The current price of CO2 

is 214 DKK per ton (The Danish Ministry of Finance, 2019). The price is currently given by the 

quota sector but is also used as the price of CO2 in areas outside the quota sector for estimations 

such as cost benefit analyses. Nevertheless, it is currently debated whether this price is too low to 

reflect the actual socioeconomic damage and abatement costs of CO2. Therefore, the Danish 

Council on Climate Change has suggested that the price of CO2 emissions must increase from the 

current 214 DKK per ton to 1.500 DKK per ton (The Danish Council on Climate Change, 2020). 

The Danish Council on Climate Change has proposed this as the volume of a tax on CO2 both 

within and outside the quota sector (The Danish Council on Climate Change, 2020). The 1.500 

DKK are estimated by using the 70-pct. reduction target as a measure of how much GHG emission 

that must be abated to reach the target. This is then used to calculate the price per ton of CO2 of 

abating this amount of CO2 (The Danish Council on Climate Change, 2020). The 1.500 DKK 

thereby reflects the marginal abatement cost of this reduction. However, there might be relatively 

great variance in the actual abatement costs for different sectors and the empirical analysis of this 

thesis seeks to estimate farm-specific abatement costs for the agricultural sector.  

 

The marginal abatement costs can be referred to as shadow prices. Shadow prices are often used to 

compare different alternatives of abating CO2 emissions, as it is more cost-effective to reduce the 

CO2 emissions with the lowest shadow prices (The Danish Ministry of finance, 2017). The 

empirical analysis covers estimating the shadow price of GHG emissions for Danish dairy farms. 

This is done by estimating a non-parametric benchmarking model with two outputs and a single 

input. The farm-specific GHG emissions, estimated in Part A, are used as an undesirable output, 

revenue a desirable output and total costs as the input. The model thereby includes both the 

economic performance as well as the climate performance of the farms. The model is based on 

linear programming, and in this specific framework, weak disposability of GHG emissions is 

assumed, and a directional distance function is imposed to handle this output as an undesirable 

output. From this model, the estimated farm-specific marginal abatement costs (shadow prices) for 
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GHG emissions are estimated by considering the trade-off between GHG emissions and revenue. 

The shadow price of GHG for a specific farm will thereby equal the estimated decrease in revenue 

that occurs when a farm decrease GHG emissions by one ton. 

 

The benchmarking framework presented in section B.2 can be applied to all parts of the agricultural 

sector and will ultimately also be able to handle more variables than presented in this analysis. 

These could include parameters describing animal welfare, environmental performance etc. where 

there is also assumed to be a trade-off with economic performance or between the given variables.   

 

The foundation of the benchmarking framework is the non-parametric efficiency analysis, Data 

Envelopment Analysis (DEA). DEA is developed based on Farrells (1957) proportional measure of 

efficiency (Bogetoft & Otto, 2011, p. 15). The output-oriented Farrell efficiency for DMUk´ is 

defined as 𝑌
∗

𝑌𝑘´
 , where 𝑌∗ represents a vector of the maximum possible outputs, and 𝑌𝑘´ represents 

the realized output quantities of 𝐷𝑀𝑈𝑘´ (Bogetoft & Otto, 2011, p. 15). The interpretation of the 

output-oriented Farrell efficiency score thereby becomes how much 𝐷𝑀𝑈𝑘´ should increase its 

output in order to become efficient. The Farrell output-oriented efficiency score is thereby always 

greater than one. An output-oriented Farrell efficiency score of 1,2 would indicate that the DMU 

should produce 120 pct. of its current output quantity in order to become efficient.  

 

In the same matter, the input-oriented Farrell efficiency score is defined as 𝑋
∗

𝑋𝑘´
, where 𝑋∗ represents 

the maximum possible input, and 𝑋𝑘´ the observed input of 𝐷𝑀𝑈𝑘´. The input-oriented Farrell 

efficiency can thereby be interpreted as how much of 𝐷𝑀𝑈𝑘´′𝑠 input quantity is actually necessary 

to operate. The input-oriented efficiency score range from zero to one, where a score of e.g. 0,8 

indicates that 𝐷𝑀𝑈𝑘´ should reduce its inputs proportionally (i.e. in the same ratio) to 80 pct. of its 

currents inputs in order to become efficient. 

 

Charnes et al. (1978) developed the non-parametric efficiency analysis “Data Envelopment 

Analysis” (DEA), which is based on the concepts of the proportional Farrell efficiency as well as 

linear programming. The Charnes et al. DEA model from 1978 assumes constant returns to scale 

(CRS), and was followed by a DEA model assuming variable returns to scale (VRS), developed by 

Banker (1984).  
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The DEA approach involves estimating a production possibility frontier (PPF), representing best 

practice within the area of analysis. The frontier is formed by enveloping the DMUs, where the 

frontier is then constituted of the efficient DMUs and convex combinations of these. Each DMU in 

the dataset is projected onto the frontier in order to measure their relative efficiency when assessing 

these against best practice. DMUs are in this way assigned an efficiency score, 𝜙, by evaluating 

their performance relative to the frontier.  

 

The DEA approach applies a set of essential axioms for defining the production possibility set. 

These are that all observed DMUs are in the production possibility set, free disposability, convexity 

and lastly an assumption of returns to scale for the specific area of analysis.  

The production possibility set, 𝑃𝑃𝑆(𝑥), can be formally defined by considering a dataset with K 

DMUs (𝑘 = (1,…𝐾)) and for DMUk letting 𝑥𝑘 = (𝑥1𝑘, … , 𝑥𝑀𝑘 ) ∈ ℜ+𝑀 denote the input vector used 

to produce the output vector denoted by 𝑦𝑘 = (𝑦1𝑘, … , 𝑦𝑆𝑘) ∈ ℜ+𝑆 . 

 

Firstly, it is assumed that all observed DMUs are in the production possibility set, indicating that it 

is possible for any DMU in the dataset to operate as any other DMU. This defines the production 

possibility set as seen in equation B.1-2. 

 

 

This assumption implies that there are no measurement errors in the estimation. Thus, the non-

parametric DEA approach is deterministic and assumes no noise in the dataset, which makes the 

DEA model relatively sensitive to outliers. 

 

The second axiom is the assumption of free disposability (also referred to as strong disposability). 

In the standard DEA approach, it is assumed that any DMU can freely dispose of both inputs and 

outputs. This indicates that a DMU can always use more input to produce a fixed amount of output 

and always produce less output given any fixed input quantity. This assumption indicates that the 

production possibility set can be expressed following equation B.1-2. 

 

𝑃𝑃𝑆 = {(𝑥, 𝑦)∈ ℜ+𝑀+𝑆|𝑥 = 𝑥𝑘, 𝑦 = 𝑦𝑘, 𝑘 = 1,… , 𝐾} B.1-1 

𝑃𝑃𝑆 = {(𝑥, 𝑦)∈ ℜ+𝑀+𝑆|𝑥 ≥ 𝑥𝑘, 𝑦 ≤ 𝑦𝑘, 𝑘 = 1,… , 𝐾} 

 
B.1-2 
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This assumption is essential to the empirical analysis of this thesis. The assumption of free 

disposability is revised for the undesirable output, as weak rather than strong disposability is 

assumed for this output. This is discussed further in section B.2. 

 

The assumption of convexity implies that any convex combination of DMUs is feasible. This 

indicates that the frontier, which constitute best practice and the benchmark for inefficient DMUs, 

consists of both observed efficient DMUs and convex combinations of these. Adding the 

assumption of convexity the production possibility set, can be expressed as shown in equation 

B.1-3. 

Furthermore, it is necessary to specify the returns to scale, which is dependent on the specific 

assumption regarding the subject of analysis. In the empirical analysis, the model is specified with 

the assumption of constant returns to scale (CRS). Assuming CRS implies that scaled feasible 

points are also assumed to be feasible. With CRS, intensity vectors (𝜆´𝑠) are constrained to 𝜆𝑘 ≥ 0 

and represent the scaling of 𝐷𝑀𝑈𝑘 when specifying the production possibility set. 

 

Benchmarking DMUs with DEA implies measuring the efficiency of each DMU relative to the 

frontier of the production possibility set. In an output-oriented CRS problem, the mathematic 

optimization problem is presented as in equation B.1-4, where 𝜙 represents the output-oriented 

Farrell efficiency score.  

 

 

𝑃𝑃𝑆 = {(𝑥, 𝑦)∈ ℜ+𝑀+𝑆|𝑥 ≥ ∑𝜆𝑘𝑥𝑘 
𝐾

𝑘=1

, 𝑦 ≤ ∑𝜆𝑘𝑦𝑘
𝐾

𝑘=1

, 𝑘 = 1, … , 𝐾} 

 

B.1-3 

max𝜙
𝜆𝑘, 𝜙  

 ∑ 𝜆𝑘𝑦𝑘
𝐾

𝑘=1

≥ 𝜙𝑦𝑘´ 

∑𝜆𝑘𝑥𝑘 
𝐾

𝑘=1

≤ 𝑥𝑘´ 

𝜆𝑘 ≥ 0, 𝑘 = 1,… , 𝐾 

B.1-4 
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One of the advantages of the non-parametric DEA approach is that it takes a minimum of 

assumptions regarding the production technology. A minimum prior knowledge of the production 

technology is thereby needed, as opposed to certain parametric analyzes where it is necessary to 

specify e.g. a specific production or cost function. However, as the method is deterministic, 

assuming no error term in the estimation, the method is relatively sensitive to outliers as oppose to a 

range of statistical methods, which to a greater extend is able to account for measurement errors.  

 

The standard DEA approach is either input-oriented – minimizing all inputs proportionally keeping 

outputs fixed, or output-oriented – maximizing all outputs proportionally keeping inputs fixed. 

The original DEA method thereby assumes that all outputs are desirable outputs, which each DMU 

is interested in maximizing. However, there has been a growing need for the possibility of 

modelling undesirable outputs, such as GHG emissions, as part of the production. By the nature of 

the undesirable outputs, each DMU should not seek to maximize but instead minimize these 

specific outputs, which is contradicting to the general modelling of desirable outputs.  

 

Modelling undesirable outputs are especially relevant in areas concerning environmental and 

climate performance, as a method which does not neglecting society’s cost of the externality in a 

given performance benchmarking.  

 

The following section describes the methodology behind a benchmarking model where GHG 

emissions are incorporated as an undesirable output by assuming weak disposability between this 

and the desirable output and using a directional distance function.  

 

The results from the benchmarking model can be split into two steps. The first step defines the 

shadow prices of GHG emissions along the frontier. These are hereafter referred to as “frontier 

shadow prices”. The frontier shadow prices represent the marginal trade-offs between GHG 

emissions and revenue when farms operate at best practice, representing the best possible 

technology currently available.  

The second step defines the current potentials for the inefficient farms of reducing GHG emissions 

and/or maximizing revenue. Through the potentials, it is possible to calculate the average 

opportunity costs of reducing GHG emissions for inefficient farms by comparing scenarios where 

the farms either only focus on reducing GHG emissions or increasing revenue. The average 
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opportunity costs thereby represent how much potential revenue an inefficient farm must give up, in 

order to move in a direction where only GHG emissions are reduced. 

 

Both the estimated frontier shadow prices and the average opportunity costs are so called abatement 

costs. However, they differ in interpretation. Frontier shadow prices represent the marginal cost of 

moving along the frontier for efficient farms i.e. the marginal abatement cost when operating at best 

practice. The average opportunity costs represent the average cost of reducing GHG emissions, 

measured in loss of potential revenue. The loss in potential revenue is estimated by comparing the 

potentials when farms are benchmarked towards efficient farms with low GHG emissions instead of 

farms with high revenue.   
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B.2 Methodology 

B.2.1 Modelling undesirable outputs 

A range of methods have been developed in order to incorporate undesirable outputs in 

benchmarking. Overall, the methods can be divided into two overarching approaches; the direct and 

indirect methods (Scheel, 2001). 

 

The indirect methods – transforming the undesirable output 

The indirect methods all concern transforming the specific variable for the undesirable output 

(denoted w) with a function 𝑓(𝑤) before integrating these in a given benchmarking model (Scheel, 

2001). The transformed variable is then used as a regular desirable output in the model. 

 

The most basic indirect method is the transformation referred to as the additive inverse. The method 

is originally developed by Koopmans (1951), and simply reverse the undesirable output by 

multiplying the variable with -1 so that 𝑓(𝑤 ) = −𝑤 . In this way, the variable now acts as a 

desirable output, with the standard “more is better” assumption, and can thereby enter as an output 

that is sought to be maximized. However, it should be noted that e.g. DEA and other non-

parametric benchmarking approaches are not able to handle negative variables, and the method is 

thereby more suitable for e.g. additive models such as the one developed by Cooper et al. (1999). 

An option which corresponds to the additive inverse is instead modelling the undesirable output as 

an input in the benchmarking model. This method is theoretically similar to the additive inverse, 

however as the undesirable output is in reality an output of production rather than an input, this 

method distorts the real production process, as the input-output relation is changed using this 

method (Scheel, 2001). 

 

Another way of dealing with the fact that the additive inverse leads to negative values for the 

transformed undesirable output is adding a constant, 𝐶, to the negative of the variable, choosing 𝐶 

such that the translated variable becomes positive for all DMUs (Ali & Seiford, 1990). The method 

can be formulated as 𝑓(𝑤 ) = −𝑤 + 𝐶. However, this approach is relatively sensitive to the choice 

of the constant 𝐶. Even though the ranking of the undesirable output of each DMU does not change 
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using this approach, the relative differences between them can be highly affected by choosing either 

a relatively large or small value of 𝐶. 

An alternative direct approach is the so called multiplicative inverse developed by (Golany & Roll, 

1989), where the undesirable output is transformed by taking the inverse of the original 𝑓(𝑤 ) =

1/𝑤 . However, as this is a non-linear transformation, the transformation tends to distort the 

relationship between DMUs in relation to the altered variable. 

 

The direct method – weak disposability with a directional distance function 

Common for the direct approaches of handling an undesirable output is that these all assume free 

disposability of this undesirable output, as the transformed variable is incorporated in the 

benchmarking model as a regular output. The indirect methods seek to deal with this problem by 

not transforming the variable for the undesirable output itself, but instead changing the 

benchmarking model to cope with the nature of the undesirable output. 

 

The standard DEA assumption of free disposability implies that it is always possible to produce 

more output given any fixed input quantity and that it is always possible to use more input given 

any output quantity. However, this might not be the case with certain undesirable outputs such as 

the undesirable output of this empirical analysis, GHG emissions. The production of dairy is 

naturally linked to GHG emissions through both enteric fermentation and manure management of 

cattle. Furthermore, it is in reality assumed that it is costly for a farm to reduce GHG emissions i.e. 

the marginal abatement cost of GHG emissions is positive. Thereby, it requires resources to reduce 

GHG emissions and these resources can therefore not be used to e.g. make investments to increase 

revenue. It is thereby not possible to decrease GHG emissions without also reducing revenue, as the 

amount of capital available for creating revenue is reduced. 

 

The indirect method, which is applied for handling GHG emissions in the following empirical 

analysis, relaxes the basic assumption of free disposability, imposing weak disposability of the 

undesirable output(s) but still assuming strong disposability of the desirable output(s). 
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B.2.2 The production possibility set with weak disposability of the undesirable 
output 

The concept of weak disposability can formally be expressed by letting the output matrix be 

denoted by 𝑦 = (𝑣,𝑤), where v represents a desirable output and w represents an undesirable 

output, following the example from Scheel (2001). 

 

The undesirable output, w, exhibit weak disposability, defined as 𝑦 ∈ 𝑃𝑃𝑆(𝑥) ⟹ 𝜃𝑦 ∈ 𝑃(𝑥),

∀ 0 ≤ 𝜃 ≤ 1. In order to still belong to the production possibility set, it is thereby necessary to 

reduce both the undesirable and the desirable output proportionally/radially in order to reduce the 

undesirable output, given a fixed level of input (x).   

For the desirable output, v, it is the case that (𝑣, 𝑤) ∈ 𝑃(𝑥) ⟹ (𝑣′, 𝑤) ∈ 𝑃(𝑥), 𝑓𝑜𝑟 𝑣′ ≤ 𝑣, 

Implying that it is possible to reduce the production of the desirable outputs without changing the 

input level. 

Figure B.2-1 illustrates how the production possibility set changes when estimating a model where 

weak disposability is imposed for the undesirable output w. 

 
Figure B.2-1: The production possibility set with a weak disposable output 
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For the standard DEA approach, presented in section B.1, it is assumed that all outputs exhibit 

strong disposability. In the standard DEA approach, the frontier will follow the horizontal dotted 

line from point C and to the left. This implies that it is possible to reduce output w, keeping the 

other output, v, constant.  

However, when w is assumed to exhibit weak disposability, this part of the frontier will not be 

feasible, as it is necessary to also reduce the desirable output when reducing the undesirable output. 

This part of the frontier is therefore instead estimated by reducing both outputs simultaneously. The 

frontier is thereby created by first following the assumption of convexity between point A, B and C 

and thereafter radially contracting both outputs from point A towards the origin. The desirable 

output, v, still exhibit strong disposability, as can be seen following the line from point E and 

vertically down, indicating that it is still possible to reduce the desirable output, v, without reducing 

the undesirable output, w. 

 

With an undesirable output, the production possibility set, 𝑃𝑃𝑆(𝑥), can be formally defined by 

considering a dataset with K DMUs and for DMU𝑘 letting 𝑥𝑘 = (𝑥1𝑘, … , 𝑥𝑀𝑘 ) ∈ ℜ+𝑀 denote the input 

vector, 𝑣𝑘 = (𝑣1𝑘, … , 𝑣𝑁𝑘) ∈ ℜ+𝑁 denote the output vector of the desirable outputs and 𝑤𝑘 =

(𝑤1𝑘, … , 𝑤𝐽𝑘) ∈ ℜ+
𝐽  denote the output vector of undesirable outputs. The production possibility set 

is thereby constructed according to B.2-1. 

 

From  B.2-1 it can be seen that the undesirable outputs are treated differently from the regular 

outputs as the undesirable outputs exhibit weak rather than strong disposability. This leads to the 

change in the frontier as seen in Figure B.2-1. The undesirable output is in this formulation 

determined directly by the convex combination of the desirable outputs and input quantities. As it is 

𝑃𝑃𝑆(𝑥) = {𝑣, 𝑤 ∶   ∑𝜆𝑘
𝐾

𝑘=1

𝑣𝑚𝑘 ≥ 𝑣𝑚𝑘
′  , 𝑚 = 1,… ,𝑀 

                                    ∑ 𝜆𝑘
𝐾

𝑘=1

𝑤𝑗𝑘 = 𝑤𝑗𝑘
′
,           𝑗 = 1,… , 𝐽 

                                    ∑ 𝜆𝑘
𝐾

𝑘=1

𝑥𝑛𝑘 ≤ 𝑥𝑛𝑘
′,            𝑛 = 1,… , 𝑁 

                                                     𝜆𝑘 ≥ 0,                            𝑘 = 1,… , 𝐾 }   

 

B.2-1 
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not possible to reduce the undesirable output without also reducing the desirable, the undesirable 

output is in the creation of the production possibility set, constrained to follow the convex 

combination given by the intensity vectors 𝜆´𝑠 directly by having ∑ 𝜆 𝑘𝐾
𝑘=1 𝑤𝑗𝑘 = 𝑤𝑗𝑘

′
.  

 

In standard DEA, having two desirable outputs, the dominating DMUs would be located towards 

the north-east in the production possibility set. An implication of including an undesirable output is 

that a part of the frontier is no longer dominating for the rest of the DMUs. This is the case as it is 

now preferable to be located towards the north-west of the production possibility set with a higher 

amount of the desirable output, and less of the undesirable output. The inefficient part of the 

frontier is illustrated by the light part of the frontier in Figure B.2-1.  

The inefficient part of the frontier is no longer superior to locations horizontally to the left within 

the production possibility set. A location horizontally to the left of the inefficient part of the frontier 

indicate the same amount of the desirable output but with less of the undesirable output, which is 

preferred in this case.   

The interpretation of a projection of DMUs to the inefficient part of the frontier is thereby 

questionable, as the DMU is no longer benchmarked against best practice.  

B.2.3 Directional distance functions 

Modelling an undesirable output with the use of the original variable directly within the 

benchmarking model, requires the use of a directional distance function (DDF). This is necessary in 

order to steer the benchmarking in a direction where desirable outputs are maximized and/or 

undesirable outputs are minimized.  

The use of a standard distance function from DEA implies minimizing all inputs or all outputs. 

However, with the introduction of an undesirable output, the distance function will have to be able 

to cope with an output that needs to be minimized instead of maximized. 

 

Figure B.2-2 illustrates how the projection towards the frontier (the benchmark) changes when 

adjusting the directional distance function.  
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Figure B.2-2: Illustration of the directional distance function 

 

If both v and w are assumed to be desirable outputs, the standard DEA radial distance function for 

𝐷𝑀𝑈𝑘´ follows the dotted line from the origin through 𝐷𝑀𝑈𝑘´and continues towards the 

benchmark at the frontier. This implies that more of both outputs is preferred and the 𝐷𝑀𝑈𝑘´ is 

thereby projected north-east onto the frontier. However, as w in this case is an undesirable output, 

the distance function must be specified towards the north-west in order to ensure a desirable 

benchmark for each DMU.  

 

The directional distance function was firstly introduced by Chambers et al. (1998), and is widely 

used to cope with models where it is necessary to specify a direction towards the frontier (see e.g. 

Lim et al. (2019)). Elaborating on the definition from Chambers et al. (1998), the output-oriented 

directional distance function with both desirable and undesirable outputs can be formulated as 

follows:  

 

𝐷⃗⃗ 𝑇(𝑥, 𝑣, 𝑤, 𝑔) = max  { 𝛽 ∈  ℜ ∶ (𝑥, 𝑣 + 𝛽𝑔𝑣, 𝑤 − 𝛽𝑔𝑤) ∈ 𝑃𝑃𝑆(𝑥) 
 

B.2-2 
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The directional vector 𝑔 = (𝑔𝑣, 𝑔𝑤) determines the specific direction of the distance function. In 

this example, input is held constant whereas the desirable output is maximized while the 

undesirable output is minimized proportionally. This can be seen as the vector 𝑔𝑤 is in fact 

subtracted from the bad output, w. 

 

The directional distance function can be specified in numerous ways. As illustrated on Figure B.2-2, 

the specification of the directional vector, g, determines the direction in which each DMU is 

projected on to the frontier. For the directional distance function to cope with the characteristics of 

both the desirable and undesirable output, it is possible to specify the direction anywhere north-west 

to each DMU in order to ensure that w is minimized, and v is maximized.  

 

One extreme specification of the directional distance function for 𝐷𝑀𝑈𝑘´ is 𝑔(0,𝑤𝑘´), indicating 

that only the undesirable output is minimized. This specification is equivalent to projecting 𝐷𝑀𝑈𝑘´ 

horizontally to the left as illustrated in Figure B.2-2.  

As the inefficient part of the frontier is always located at the right side of the production possibility 

frontier (illustrated by the light line in Figure B.2-2) a directional distance function which only 

minimize the undesirable output will always ensure that DMUs are always projected onto the 

strongly efficient part of the frontier.  

 

The opposite extreme is specifying a directional distance function where only the desirable output is 

maximized, given by a directional vector of 𝑔(𝑣𝑘´, 0). This direction is illustrated in Figure B.2-2 

where 𝐷𝑀𝑈𝑘′ is projected vertically upwards towards the frontier.  

 

In this specific example, with the particular directional vector of 𝑔(𝑣𝑘´, 0), 𝐷𝑀𝑈𝑘´ is projected onto 

the so-called inefficient part of the frontier, where the benchmark itself is questionable. Whether 

DMUs are projected on to the inefficient part of the frontier will depend on the specific model and 

thereby the shape of the frontier as well as the location of the given DMU. This characteristic of the 

model is a relatively large drawback of the method. Nevertheless, it is possible to either exclude the 

specific DMUs which are projected to the inefficient part of the frontier, or alternatively specify a 

direction which ensures that 𝐷𝑀𝑈′𝑠 are only projected onto the strongly efficient part of the 

frontier.  
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It is possible to defines the DDF such that both the desirable output is maximized, and the 

undesirable output is minimized. An example could be to use a directional vector such as 

𝑔(𝑣𝑘´, 𝑤 𝑘´), leading to a benchmark somewhere in between the two extremes.  

 

Equation B.2-3 defines for DMUk’= (𝑣 𝑘´, 𝑤 𝑘´, 𝑥 𝑘´) the LP problem combining a production 

possibility set assuming weak disposability of the undesirable output(s) with a radial distance 

function. The model imposes CRS and is output-oriented with a directional vector defined by 𝑔 =

(𝑔𝑣𝑘
′, 𝑔𝑤𝑘

′

 ) ∈ ℜ0
𝑁 ,ℜ0

𝐽 .  

 

𝛽 represents the inefficiency term. For an output oriented model, keeping input fixed, the optimal 𝛽 

value for each DMU represents the potential reduction in the undesirable output corresponding 

directly to the potential increase of the desirable output, which is a consequence of the model being 

radial (Bogetoft & Otto, 2011, p. 33).  

 

The 𝛽 value can both be interpreted as an excess or shortage function. It corresponds to the number 

of times the directional vector 𝑔 has been produced in excess of what is necessary of the 

undesirable output and in shortage of what could have been produced of the desirable output.  

 

When specifying the directional vector, it is important to notice that the interpretation of the 𝛽′𝑠 

across DMUs are dependent on both the direction and length of the specific directional vector. If 

e.g. the directional vector is doubled in length, the relative potential in form of the 𝛽′𝑠 is halved 

 max 𝛽
𝜆𝑘, 𝛽  

𝑠. 𝑡.     ∑𝜆 𝑘𝑣𝑚𝑘
𝐾

𝑘=1

≥ 𝑣𝑚𝑘´ + 𝛽𝑔𝑣,𝑚𝑘
′      , 𝑚 = 1,… ,𝑀 

            ∑ 𝜆 𝑘𝑤𝑗𝑘
𝐾

𝑘=1

= 𝑤𝑗𝑘´ − 𝛽𝑔𝑤,𝑗𝑘
′
     , 𝑗 = 1, … , 𝐽 

           ∑ 𝜆 𝑘𝑥𝑛𝑘
𝐾

𝑘=1

≤ 𝑥𝑛𝑘´  , 𝑛 = 1,… ,𝑁 

          𝜆 𝑘 ≥ 0 𝑘 = 1,… , 𝐾  

 

B.2-3 
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(Bogetoft & Otto, 2011, p. 33). However, in the specific case where the directional vector, 𝑔, is 

specified using the input and output vectors of DMU’ itself (𝑔 = (𝑣 𝑘´, 𝑤 𝑘´)), the excess/shortage 

function, 𝛽, measures (relative) inefficiency similar to that known from the Farrell method 

(Bogetoft & Otto, 2011, p. 33).   

A 𝛽 value of 0,2 thereby implies that the given DMU is able to reduce its production of undesirable 

outputs by 20 pct. while increasing its desirable outputs by 20 pct. when comparing the DMU to 

best practice.  

The 𝛽𝑠 are thereby measures of inefficiency. The higher the value of 𝛽 for any given DMU, the 

more improvement potential is found for the DMU in the model, indicating a higher level of 

inefficiency.  

 

In order to obtain an efficiency score it is therefore necessary to transform the 𝛽 measure of 

inefficiency. In the literature of output oriented models with directional distance functions, 

efficiency scores are typically reported using the Shephard output distance function2 (see e.g. Yuan 

et al. (2011) or Chung et al. (1997)). The calculation of efficiency scores for desirable output is 

shown equation B.2-4. 

 

However, it is worth noting that the direct interpretation of this efficiency score is related to the 

desirable output. A 𝛽 of 0,2 and a corresponding efficiency score of 0,83 implies that a DMU is 

currently producing 83 pct. of the obtainable desirable output defined by best practice.  

A similar interpretation of the efficiency score, directly related to the undesirable output, is 

calculated by taking 𝑒𝑓𝑓𝑤 =
1
1−𝛽

. With a 𝛽 of 0,2 the DMU would thereby be producing 125 pct. of 

the optimal amount of the undesirable output. 

 
2 The notion of efficiency obtained from the Shephard output distance function corresponds to the inverse of that from 

the Farrell efficiency (Bogetoft and Otto 2011, 30).  

𝑒𝑓𝑓𝑣 =
1

1 + 𝛽
 B.2-4 
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B.2.4 Duality and frontier shadow prices 

The LP program from Equation B.2-3 is presented as the primal problem, which in a DEA context 

is referred to as the envelopment space. This exact same program can also be expressed as the dual 

problem referred to as the multiplier space. 

The duality of the LP problem i.e. the multiplier space, is essential to the concept of estimating 

shadow prices of an undesirable output. The primal and the dual formulation measures efficiency 

similar using different approaches.  

 

The envelopment formulation of the LP problem is specified with the use of intensity vectors 𝜆′𝑠. 

The primal formulation thereby contributes with knowledge regarding peers and is suitable for 

analysis of the efficient DMUs and specific targets for each DMU. The primal formulation can be 

illustrated by enveloping the production possibility set as seen in previous figures, hence the name 

envelopment space. 

 

In multiplier space, the productivity vector of each DMU is maximized in order to measure 

efficiency. The productivity vector is defined by the weighted sum of outputs divided by the 

weighted sum of inputs. The point of interest in the dual is thereby maximizing the total value of the 

outputs divided by the total costs. The weights of each input and output are referred to as 

multipliers, hence the name multiplier space. When prices are known, these are obvious multipliers 

for each variable. However, with DEA and similar non-parametric methods, prices are assumed to 

be unknown or uncertain. Weights are therefore chosen such that the individual productivity ratio 

for each DMU is maximized. Each DMU is, through the LP problem, thereby given the benefit of 

the doubt when estimating the efficiency through weights (prices) of each output and input.  

 

However, when providing each DMU with the benefit of the doubt by choosing weights without 

constraints, the productivity ratio will be chosen to be infinitely large. Without constraints, DMUs 

can e.g. choose to let the output weights be infinitely large or the input weights zero leading to an 

infinitely large productivity ratio. Therefore, the productivity ratio is maximized under the 

constraint that no other DMUs productivity ratio can exceed 1, indicating that no other DMU can 

have a net profit (Bogetoft & Otto, 2011, p. 135). As in the envelopment formulation, the efficient 



 50 

DMUs get assigned a score of 1, as these can maximize their own productivity ratio to 1 without 

being limited to the constraint by other DMUs productivity ratio. 

 

The individual weights of each DMU can be used to point out the performance within the different 

variables for each DMU. A relative high weight for a given variable, indicates that the DMU is 

performing relatively well within that certain area, as the DMU performs best when weighting this 

variable relatively high compared to other variables.  

 

As variables can be measured in different units, as for GHG emissions and revenue, it can be useful 

to examine so called virtuals instead of the specific weights. Virtuals are defined by the product of 

the given input or output variable and the corresponding weight. The interpretation of the virtuals 

are thereby comparable across variables measured in different units as the virtuals represent the 

contribution of each variable to the DMUs estimated efficiency. 

 

With multiple outputs and/or inputs, it is possible for a DMU to assign zero weights to a given 

variable, thereby excluding this variable when assessing the DMUs individual performance. 

Depending on the scope of the analysis, it may be necessary to include weight restrictions to limit 

the possibility of a DMU weighting a variable zero. Weight restrictions can e.g. also be imposed to 

restrict the relative weights between two variables. As pointed out by Podinovski (2004), 

introducing weight restrictions in multiplier space leads to changes in the trade-offs and thereby the 

shape of the frontier in envelopment space. For the empirical analysis of this report, weight 

restrictions are therefore not suitable, as the shape of the frontier is essential to the analysis of 

shadow prices. 

 

Weights in multiplier space can be interpreted as trade-offs in envelopment space. Weights do not 

occur directly in the envelopment formulation, as is the case with the multiplier formulation. 

However, as these are each other’s dual, weights are still meaningful when assessing each DMU in 

the envelopment space. The relative weights between two outputs (or inputs) represent the trade-off 

between the two outputs. When assessing a model in two dimensions as seen in e.g. Figure B.2-1 or 

Figure B.2-2, the trade-off graphically corresponds to the slope of the frontier. As can be seen from 

the figures, the slope and thereby the trade-off between the desirable and undesirable output, 



 51 

changes along the frontier. This implies that the frontier shadow prices change dependent on the 

specific projection point on the frontier for a given DMU. 

 

Weights from the dual formulation of the LP problem can therefore be used to derive frontier 

shadow prices. The frontier shadow price for an undesirable output w is calculated according to 

equation B.2-5 

 

 

In equation B.2-5, 𝑝𝑣 is the price of the desirable output v, 𝜋𝑤 is the weight of the undesirable 

output and 𝜋𝑣 is the weight of the desirable output. In the empirical analysis, the desirable output is 

revenue. This implies that 𝑝𝑣=1 as the desirable output is measured in DKK. 

 

The frontier shadow prices thereby represent the trade-off between GHG emissions and revenue at 

the frontier i.e. the cost of CO2e given the best available technology. The shadow price of CO2e is 

therefore a marginal abatement cost for an efficient DMU, indicating the cost of lost revenue when 

reducing the CO2e emissions with one unit.  

 

The method to estimate a model for calculating shadow prices from an undesirable output using a 

directional distance function and weak disposability of the undesirable output is originally 

developed by Färe et al. (1993).  

Färe et al. (1993) utilizes the characteristics of the trade-offs to derive firm specific shadow prices 

of pollution from the Canadian pulp and paper industry, and the method has since then been applied 

by a range of scholars estimating shadow prices (see e.g. Harkness (2006) and Fukuyama (2008)).  

 

The dual formulation of the weak disposability technology using a directional distance function is 

still widely discussed. The method is still developing and there exists a body of literature which 

seeks to formulate the dual program of the envelopment formulation presented in equation B.2-3 

(see e.g. Kuosmanen et al. (2010) , Leleu (2012), Leleu et al. (2016)).  

Leleu et al. (2016) provide a dual formulation which is in line with the models presented in this 

empirical analysis. In order to deduct the dual formulation of the problem presented in equation 

B.2-3, the problem is rewritten to equation B.2-6. 

𝑝𝑤 = 𝑝𝑣
𝜋𝑤
𝜋𝑣

 B.2-5 
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The rewriting is done by defining a new variable 𝜎 = 1 − ∑ 𝜆 𝑘𝐾
𝑘=1 , which implies that 1 =

∑ 𝜆 𝑘𝐾
𝑘=1 + 𝜎. Using this, 𝑣𝑚𝑘´ can be rewritten so that 𝑣𝑚𝑘´ = ∑ 𝜆 𝑘𝐾

𝑘=1 𝑣𝑚𝑘´ + 𝜎𝑣𝑚𝑘´, and similar for the 

inputs (𝑥𝑛𝑘´) and undesirable outputs (𝑤𝑗𝑘´) for the DMU under observation.  

The constraint ∑ 𝜆 𝑘𝑣𝑚𝑘𝐾
𝑘=1 ≥ 𝑣𝑚𝑘´ + 𝛽𝑔𝑣,𝑚𝑘

′  from B.2-3 can thereby be defined as ∑ 𝜆 𝑘𝑣𝑚𝑘𝐾
𝑘=1 ≥ 

∑ 𝜆 𝑘𝐾
𝑘=1 𝑣𝑚𝑘´ + 𝜎𝑣𝑚𝑘´ +  𝛽𝑔𝑣,𝑚𝑘

′  which can be rearranged to the constraint showed in B.2-7. 

 

The dual variables for the deduction are presented together with the constraints in the envelopment 

formulation in B.2-6. The color coding in B.2-6 and B.2-7 serve to illustrate the relationship 

between the primal and the dual problem. As the program is output oriented, it is a maximization 

problem in envelopment space, and a minimization problem in multiplier space.  

 

The primal formulation 

 

 

  

max𝛽
𝜆𝑘, 𝛽  

𝑠. 𝑡. 

−∑𝜆 𝑘(𝑣𝑚𝑘
𝐾

𝑘=1

− 𝑣𝑚𝑘
′) + 𝜎𝑣𝑚𝑘´ ≤ −𝛽𝑔𝑣,𝑚𝑘

′    

−∑𝜆 𝑘(𝑤𝑗𝑘
𝐾

𝑘=1

− 𝑤𝑗𝑘
′
) + 𝜎𝑤𝑗𝑘´ =  𝛽𝑔𝑤,𝑗𝑘

′
  

      ∑ 𝜆 𝑘(𝑥𝑛𝑘
𝐾

𝑘=1

− 𝑥𝑛𝑘´) − 𝜎𝑥𝑛𝑘´ ≤ 0  

   ∑ 𝜆 𝑘 
𝐾

𝑘=1

+ 𝜎 = 1  

          𝜆 𝑘 ≥ 0 

          𝜎 ≥ 0 

 

 

 

 
 

𝜋𝑣,𝑚 

 
 

𝜋𝑤,𝑗    

 
 
𝜋𝑥,𝑛 

 
 
𝛾 

 

 

 B.2-6 
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The dual formulation 

 

In the dual formulation presented in equation B.2-7, 𝛾 represents the shadow profit inefficiency and 

thereby equals zero for efficient DMUs and is positive for inefficient DMUs. 𝜋𝑣,𝑚  represents the 

weight of the m’th desirable output, 𝜋𝑤,𝑗  represents the weight of the j’th undesirable output and 𝜋𝑥,𝑛  

represents the weight of the n’th input.  

 

The term ∑ 𝜋𝑣,𝑚 𝑀
𝑚=1 𝑣𝑚𝑘

′ + ∑ 𝜋𝑤,𝑗 
𝐽
𝑗=1 𝑤𝑗𝑘

′
− ∑ 𝜋𝑥,𝑛 𝑁

𝑛=1 𝑥𝑛𝑘
′ represents the shadow profit for the 

DMU under observation, whereas ∑ 𝜋𝑣,𝑚 𝑀
𝑚=1 𝑣𝑚𝑘

′ + ∑ 𝜋𝑤,𝑗 
𝐽
𝑗=1 𝑤𝑗𝑘

′
− ∑ 𝜋𝑥,𝑛 𝑁

𝑛=1 𝑥𝑛𝑘
′ + 𝛾 represents 

the shadow profit for the DMU under observation’s benchmark at the frontier. Therefore, the first 

condition implies that if the DMU is efficient, these two shadow profits will be equal to one another 

forcing 𝛾 = 0.  

With an arbitrary set of weights chosen for a DMU, the difference between the obtainable profit at 

the frontier and the DMU’s current profit is equal to the shadow profit inefficiency (𝛾). The aim of 

the program is thereby finding the optimal set of shadow prices (𝜋𝑣, 𝜋𝑤, 𝜋𝑥) in order to minimize 

the shadow profit inefficiency for each DMU (Leleu, Mixing DEA and FDH models together, 

2009). 

min  𝛾
𝜋𝑣, 𝜋𝑤, 𝜋𝑥, 𝛾 

𝑠. 𝑡. 

(∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘 +∑𝜋𝑤,𝑗 
𝐽

𝑗=1

𝑤𝑗𝑘 −∑𝜋𝑥,𝑛 
𝑁

𝑛=1

𝑥𝑛𝑘) − (∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘
′ +∑𝜋𝑤,𝑗 

𝐽

𝑗=1

𝑤𝑗𝑘
′ −∑𝜋𝑥,𝑛 

𝑁

𝑛=1

𝑥𝑛𝑘
′) − 𝛾 ≤ 0  

−∑ 𝜋𝑣,𝑚 𝑔𝑣,𝑚𝑘
′ +

𝑀

𝑚=1

∑𝜋𝑤,𝑗 𝑔𝑤,𝑗𝑘
′

𝐽

𝑗=1

− 1 = 0 

   ∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘
′ +∑𝜋𝑤,𝑗 

𝐽

𝑗=1

𝑤𝑗𝑘
′
−∑𝜋𝑥,𝑛 

𝑁

𝑛=1

𝑥𝑛𝑘
′ + 𝛾 ≥ 0 

     𝜋𝑣,𝑚 ≥ 0 

     𝜋𝑤,𝑗 ≤ 0 

     𝜋𝑥,𝑛 ≥ 0 

 

B.2-7 
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In B.2-7 the constraint ∑ 𝜋𝑚𝑣𝑀
𝑚=1 𝑣𝑚𝑘

′ + ∑ 𝜋𝑗𝑤
𝐽
𝑗=1 𝑤𝑗𝑘

′
− ∑ 𝜋𝑛𝑥𝑁

𝑛=1 𝑥𝑛𝑘
′ + 𝛾 = 0 serves as a “zero 

shadow profit condition” imposed under CRS. All fully efficient DMUs under CRS operate at the 

most optimal scale with the highest output/input ratio and thereby highest possible profit. The 

shadow profit at the frontier must therefore be zero, as moving along the frontier will not increase 

shadow profit. Under VRS the term ∑ 𝜋𝑣,𝑚 𝑀
𝑚=1 𝑣𝑚𝑘

′ + ∑ 𝜋𝑤,𝑗 
𝐽
𝑗=1 𝑤𝑗𝑘

′
− ∑ 𝜋𝑥,𝑛 𝑁

𝑛=1 𝑥𝑛𝑘
′ + 𝛾 is 

unconstrained as it allows for differences in economies of scale. 

 

In the formulation in equation B.2-7 proposed by Leleu, et al. (2016) the weight of the undesirable 

output (𝜋𝑤,𝑗 ) is constrained to be non-positive. It is in the referenced literature discussed whether 

𝜋𝑤,𝑗  should be unconstrained or must be constrained to be non-positive. Whether weights of 

undesirable outputs are positive or negative in multiplier space can be interpreted as whether the 

slope of the frontier in envelopment space is allowed to be both positive and negative. i.e. whether 

negative shadow prices for the undesirable output should be possible. When the weight of the 

undesirable output is constrained to be non-positive, this implies that negative shadow revenue is 

generated from the undesirable output. Positive weights will, on the contrary, indicate that 

undesirable outputs are able to generate revenue in the same manner as is the case for desirable 

outputs. Having 𝜋𝑤,𝑗  unconstrained is for this reason criticized in both Leleu et al. (2016), Hailu et 

al. (2001) and Hailu (2003). 

 

Due to limitations of the software used to compute the empirical analysis in this report, the weight 

for the undesirable output is not constrained to be non-positive. In the formulation used to compute 

the models in this empirical analysis, the constraint 𝜋𝑤,𝑗 ≤ 0 presented in equation B.2-7 is thereby 

not present. It should nevertheless be noted that observations for which 𝜋𝑤,𝑗  is positive 

(corresponding to the DMUs which are projected onto the inefficient part of the frontier) are 

removed from the presentation of the results of the empirical analysis in section B.4. 

 

The problem used in the following empirical analysis in multiplier space for a CRS model with 

weak disposability for the undesirable output and a directional distance function can be presented as 

follows from equation B.2-8. 
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For an output-oriented model, the program is a maximization problem in envelopment space, and a 

minimization problem in multiplier space. For such models in multiplier space, the sum of output 

virtuals are held equal by restricting these to a constant (often 1), while the sum of the input virtuals 

are minimized. This is the normalization constraint.  
 

With 𝑔 = (𝑣𝑚𝑘
′, 𝑤𝑗𝑘

′
) the normalization can be rewritten as: ∑ 𝜋𝑣,𝑚 𝑣𝑚𝑘

′ −𝑀
𝑚=1 ∑ 𝜋𝑤,𝑗 𝑤𝑗𝑘

′𝐽
𝑗=1 = 1, 

which is in line with the normalization of a standard output oriented DEA problem where the sum 

of the output virtuals is 1, given that the weights on the undesirable output should ideally be non-

positive. 

B.2.5 Second stage analysis 

The benchmarking model presented in the following empirical analysis contains various 

information. In addition to information regarding the trade-off between GHG emissions and 

revenue, the benchmarking analysis of dairy farms also provide information as to which farms 

constitute best practice within the sector. In the following empirical analysis, a second stage 

analysis of the inefficiency term (𝛽) is conducted in order to extract knowledge of the 

characteristics from the efficient farms. This information can ultimately help inefficient farm as 

min  𝛾
𝜋𝑣, 𝜋𝑤, 𝜋𝑥, 𝛾 

𝑠. 𝑡. 

(∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘 +∑𝜋𝑤,𝑗 
𝐽

𝑗=1

𝑤𝑗𝑘 −∑𝜋𝑥,𝑛 
𝑁

𝑛=1

𝑥𝑛𝑘) − (∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘
′ +∑𝜋𝑤,𝑗 

𝐽

𝑗=1

𝑤𝑗𝑘
′ −∑𝜋𝑥,𝑛 

𝑁

𝑛=1

𝑥𝑛𝑘
′) ≤ 𝛾  

∑ 𝜋𝑣,𝑚 𝑔𝑣,𝑚𝑘
′ −

𝑀

𝑚=1

∑𝜋𝑤,𝑗 𝑔𝑤,𝑗𝑘
′

𝐽

𝑗=1

= 1 

∑ 𝜋𝑣,𝑚 
𝑀

𝑚=1

𝑣𝑚𝑘
′ +∑𝜋𝑤,𝑗 

𝐽

𝑗=1

𝑤𝑗𝑘
′
−∑𝜋𝑥,𝑛 

𝑁

𝑛=1

𝑥𝑛𝑘
′ + 𝛾 = 0 

  𝜋𝑣,𝑚 ≥ 0 

  𝜋𝑤,𝑗  𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 

 𝜋𝑥,𝑛 ≥ 0 

 

B.2-8 
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how to manage their production in order to reach the frontier. The second stage analysis can provide 

information on the optimal structure of a farm given the characteristics of efficient farms.  

Information regarding what characterizes the efficient farms could also be used in future regulation 

of the dairy farms. The information could be used to legislate such that inefficient farms are steered 

towards what define best practice within the sector today. This could thereby be a way of catching 

up with the current technological lag found within the sector. 

 

There exist different methods for second stage analyses. The inefficiency term 𝛽 is the dependent 

variable of this second stage efficiency analysis. As this variable is limited to a value between 0-1, 

the dependent variable of the second stage analysis is censored around 0. It is thereby suitable to 

use a Tobit regression. The Tobit regression allows for regressing 𝛽 on multiple variables. 

 

A Tobit regression should be used when the dependent variable is censored as is the case with an 

(in)efficiency score (Bogetoft & Otto, 2011, p. 189). The range of an (in)efficiency score varies 

between the left censored value 0 to the right censored value 1, and the Tobit regression is thereby 

often used in the literature to conduct second stage analyses for DEA models (see e.g. Ahmad et al. 

(2017), McDonald (2008), Saglam, (2018) and Liu et al. (2017)).  

 

The Tobit regression with the inefficiency score having a range between 0-1 can formally be 

expressed by equation B.2-9 following a modified example from McDonald (2008): 

In equation B.2-9, 𝛽𝑖   is the observed inefficiency scores which are the censored values of the latent 

variable 𝛽𝑖∗. The latent response variable is estimated by the explanatory variables 𝑥 and an error 

term which is normally distributed with a mean value of 0 and variance of 𝜎2. The latent variable 

for inefficiency can be interpreted as an underlying measure of inefficiency which is not restricted 

to certain values by the implications of the estimation in the benchmarking model. 

𝛽𝑖∗ = 𝑥𝑏𝑖 + 𝑒𝑖, 𝑒𝑖|𝑥𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 

𝑖𝑓 𝛽𝑖∗ ≤ 0,   𝛽𝑖 = 0 

𝑖𝑓 0 < 𝛽𝑖∗ < 1,   𝛽𝑖 = 𝛽𝑖 
∗ 

𝑖𝑓 𝛽𝑖∗ ≥ 1,   𝛽𝑖 = 1 

 

 

B.2-9 
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The interpretation of the 𝑏𝑖 's are similar to the interpretation of OLS, where the coefficients (b) can 

be interpreted as the partial effect on the latent variable. The indicator function from equation 

B.2-9, converts the latent variable into the response variable (in this case the inefficiency score). 

This conversion is non-linear (Wooldridge, 2016, pp. 536-547) implying that the coefficients from 

the Tobit estimation cannot be interpreted directly on the response variable (𝛽𝑖 ). Nevertheless, the 

sign of the coefficients can be used to see in which direction the explanatory variable is affecting 

the response variable.  

 

The partial effects on the response variable in a Tobit regression are dependent on the specific 

values of the explanatory values and can therefore only be calculated given the specific values of 

the explanatory variables. However, it is possible to calculate some general partial effects of the 

response variable such as the average partial effect (APE) or partial effect of the average (PEA) 

(Wooldridge, 2016, pp. 536-547).  

 

For the empirical analysis the average partial effects are calculated and presented for the Tobit 

models in the second stage analysis. In the following second stage analysis the average partial 

effects are calculated. The average partial effects are calculated for expected values of the depend 

variable greater than 0. In this thesis this implies that the regression of the inefficiency score is only 

conducted for inefficient farms, as efficient farms have an inefficiency score of 0.  

 

The calculation of APE for a given explanatory variable varies dependent on whether the 

explanatory variable is continuous or discrete. The partial effects for continuous variables are 

calculated following equation B.2-10 (Wooldridge, 2016, pp. 536-547). For discrete variables, such 

as a binary variable the calculation is shown in equation B.2-11 (Wooldridge, 2016, pp. 536-547). 

Estimating APE concerns firstly estimating the partial effects and thereafter taking the mean of 

these to obtain the average partial effect for both continuous and discrete variables. 

 

In equation B.2-10 and B.2-11, bi represents the coefficient from the Tobit regression for variable i. 

Φ is the normal probability density function, 𝜙 is the normal cumulative density function. 𝑿𝐛 is the 

predicted latent variable from the Tobit model and 𝜎 is the standard deviation of the error term for 

the latent variable. 
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The partial effects for a dummy variable are calculated by estimating the partial effects twice 

according to equation B.2-11. First it is necessary to estimate the predicted values having the 

dummy variable take the value 0 and again having the dummy variable take the value 1. The partial 

effects for the two scenarios are hereafter subtracted from one another to obtain the partial effect of 

going from a dummy value of 0 to 1. The average partial effect of this dummy variable is hereafter 

calculated as the average of the partial effects. 

  

𝜕𝐸(𝑦|𝑦 > 0)
𝜕𝑥𝑖

= 𝑏𝑖

(

 1 − (
ϕ(𝐗𝐛𝜎 )

Φ(𝑿𝐛𝜎 )
)(

𝐗𝐛
𝜎
+
ϕ(𝐗𝐛𝜎 )

Φ(𝑿𝐛𝜎 )
)

)

  
 

B.2-10 

𝐸(𝑦|𝑦 > 0) = 𝐗𝐛 + σ(
ϕ(𝐗𝐛𝜎 )

Φ(𝑿𝐛𝜎 )
) 

 

B.2-11 
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B.3 Empirical benchmarking analysis 
 

The empirical analysis seeks to measure the efficiency potential within Danish dairy farms in 

relation to both revenue and GHG emissions, and to estimate abatement costs of reducing GHG 

emissions. The analysis will be conducted by benchmarking dairy farms using a non-parametric 

efficiency analysis with a technology set exposing weak disposability of the undesirable output, 

GHG emissions, and using an output oriented directional distance function.  

 

The analysis initially explores the differences in organic versus conventional farming. As a 

consequence of this analysis, the remaining empirical analysis is conducted by treating organic and 

conventional farms in two separate benchmarking models.  

 

Especially, the frontier shadow prices of GHG emissions, which will be estimated, are relatively 

sensitive to the specific direction of the distance function, as mentioned in section B.2.4. Therefore, 

three different directional vectors have been used in both the conventional and organic 

benchmarking, to illustrate the impact of these to the results. By applying the three different 

directional vectors, it is possible to examine the variation in frontier shadow prices of GHG 

emissions as well as calculating average opportunity costs by utilizing the differences across the 

models.  

 

The six models shown in Table B.3-1will be presented throughout the empirical analysis. The 

models cover different choices of the directional vector g. The GHG models (“GHG conventional” 

and “GHG organic”) are estimated with a directional vector which only seeks to minimize GHG 

emissions for each farm keeping both input (total costs) and revenue fixed. The revenue models 

(“Revenue conventional” and “Revenue organic”) are estimated with a directional vector which 

only seeks to maximize revenue, keeping both input and GHG emissions fixed. The mixed models 

(“Mix conventional” and “Mix organic”) are estimated with a directional vector where both GHG 

emissions are minimized while revenue is maximized simultaneously, still keeping input fixed. In 

the mixed models, the reduction of GHG emissions and the increase in revenue is proportional to 

each other, as a radial distance function is used. 
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Table B.3-1: Overview of benchmarking models estimated in the empirical analysis 

    Farming Type 

    Conventional Organic 

O
ri

en
ta

tio
n 

Radial distance function, g(vk,wk) Mix conventional Mix organic 

Only minimizing GHG emissions g(0,wk) GHG conventional GHG organic 

Only maximizing revenue g(vk,0) Revenue conventional Revenue organic  

B.3.1 Input and output variables 

Table B.3-2 displays the composition of the three variables used in this empirical analysis: Total 

revenue (desirable output (v)), GHG emissions (undesirable output (w)) and Total costs (input 

(x)). The variables for revenue and total costs are constructed based on Lillethorup (2017).  

 
Table B.3-2: Overview of sub elements included in the input and output variables 

    Mean Min Max St. Dev. 

In
pu

ts
 

Feed (DKK) 1.930.622 225.914 14.220.617 1.466.139 

Total labor cost (DKK) 1.245.177 325.044 7.543.761 727.992 

Other variable costs (DKK) 1.851.062 475.695 8.991.549 977.783 

Fixed costs (DKK) 1.673.815 395.369 8.673.713 939.089 

Capital costs (DKK) 1.405.580 111.572 6.290.664 736.326 

Total costs (DKK) 8.106.255 2.564.402 38.007.383 4.382.512 

O
ut

pu
ts

 

Revenue from milk (DKK) 6.826.507 1.893.486 38.301.378 4.166.906 

Revenue from Other outputs (DKK) 1.882.169 197.822 11.457.263 1.221.275 

Total Revenue (DKK) 8.708.676 2.825.628 45.158.160 5.093.578 

GHG emissions (tons CO2e) 1.440 481 8.456 866 

 

The output variable revenue is the sum of revenue from milk and other outputs constructed by 

Lillethorup (2017).  

The input variable total costs in this empirical analysis is the sum of the five inputs: feed, total labor 

costs, other variable costs, and capital costs also constructed by Lillethorup (2017). 
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The variable cost to feed is defined by Lillethorup (2017) and covers the costs of buying grains and 

fodder. Labor costs are estimated as: "the value of family labor plus paid labor", other variable 

costs cover costs to "fuel, fertilizer, veterinary costs etc." Fixed costs are estimated to "include 

various costs for maintenance, taxes, insurances etc." Capital costs consist of "various costs for 

maintenance, taxes, insurances etc." (Lillethorup, 2017). The undesirable output, GHG emissions, 

is the variable estimated in Part A of this thesis. 

 

In Table B.3-2 it can be seen that the different sub elements of the input variable contribute on 

average relatively equally to the aggregated input variable “total costs”. For the output variable 

“total revenue”, the revenue from milk represents the largest share, which is preferable, as the main 

focus of the empirical analysis is the climate impact of dairy production in particular.  

 

Total costs and total revenue are used as aggregated measures as the sub elements of these variables 

are all measured in the same unit (DKK). Therefore, there is not necessarily a need for using the sub 

elements separately in the benchmarking model. However, Asmild (2019) argues that it could be 

preferable to estimate variable and fixed costs as separate inputs, as fixed costs are long term 

investments which can be bound in soils, buildings etc. It might therefore not be possible to reduce 

these as easily as the variable costs which represents short term investments such as labor and feed.  

Furthermore, the capital costs are calculated as 4 pct.3of the capital stock consisting of e.g. 

buildings, machinery and land, indicating that the costs of having these are measured as the 

opportunity costs of not having invested the capital. This measure might be uncertain due to the 

difficult choice of choosing the right interest rate, and the cost is not an incurred cost in the same 

way as the remaining costs. Therefore, it might make sense to split the inputs up as the capital costs 

are not directly comparable to the remaining costs. However, as the model estimated in the 

empirical analysis is not straight forward to use and interpret, and as the R package used for the 

construction of the model is relatively new and unused, it is convenient to only include three 

variables in the model. This makes it more straightforward to graphically illustrate the results and to 

examine whether the model behave as expected. 

 
3The ministry of finance suggests using an interest of 4 pct. in the first 35 years when evaluating projects. The interest rate consists of 

the risk-free real interest rate corrected for risks that are not systematic or diverse (The Danish Ministry of finance 2017).  
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B.3.2 Comparing production conditions between organic and conventional farms 

A basic assumption of the benchmarking model is that DMUs are in general comparable. This 

indicate that DMUs must operate under the same framework conditions and thereby have the same 

opportunities within the area of analysis. As this empirical analysis only covers specialized dairy 

farms, and as the data cleaning has sought to create a relatively homogenized dataset in relation to 

the relevant variables, the farms are assumed to be comparable across the dataset. However, it 

might not be the case that organic and conventional farms are directly comparable and it might not 

be suitable to model these types of farms within the same benchmarking model.  

 

Figure B.3-1 illustrates how organic and conventional models are located in the production 

possibility set. To be able to illustrate the three variables in a two-dimensional plot, the two outputs: 

revenue and GHG emissions have been divided with the input: total costs. 

The plot indicates that organic farms have a tendency to be located towards the left, with a lower 

GHG emission/Costs ratio than conventional farms, but with approximately the same variance in 

the Revenue/Costs ratio. 

 
Figure B.3-1: The production technology for organic and conventional farms 
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The sample of conventional farms includes a total of 1.049 farms, whereas the sample for organic 

farms include 204 farms. To further investigate the determination of the differences between 

conventional and organic farms, and to ensure that it is not driven by the estimation of GHG 

emissions from Part A, the two production types are compared across a range of variables as seen in 

Table B.3-3. The variables chosen for comparison are specified “per cattle” or “per liter of milk” in 

order to eliminate any structural differences in scale between the two production types.  

 
Table B.3-3: Comparison of the two production types: conventional and organic farms 

  Mean Standard deviation P-value from 

wilcoxon test   Organic Conventional Organic Conventional 

Share of Jersey cattle 0,11 0,10 0,30 0,29 6,08E-01 

GHG from enteric fermentation per 

cattle (Tons) 4,62 4,91 0,42 0,45 3,04E-20*** 

GHG from manure management per 

cattle (Tons) 1,34 1,30 0,52 0,38 6,91E-01 

Total GHG per cattle (Tons) 5,96 6,20 0,66 0,60 2,95E-12*** 

Total GHG per liter of milk (Tons) 37,93 41,57 18,21 24,41 1,46E-01 

Revenue from milk per cattle (DKK) 32.953,94 28.357,46 4.021,57 2.740,80 1,03E-52*** 

Revenue from Other outputs per cattle 

(DKK) 9.268,83 8.325,73 3.365,12 3.945,09 1,37E-08*** 

Costs per cattle (DKK) 33.416,14 29.903,01 4.798,35 4.398,19 5,50E-24*** 

Note: *p<0,1** p<0,05 ***p<0,01 

 

The significance in the difference for the relevant variables across the two production types are 

tested using a Wilcoxon signed-rank test. From Table B.3-3 it can be seen that the two production 

types are shown to be significantly different on a range of parameters. The total GHG emissions per 

cattle are on average lower for organic farms than for the conventional farms. This seem to be 

driven by the fact that the specific GHG emissions stemming from enteric fermentation, which 

contributes with the majority of the total GHG emissions, is lower for the organic farms.  

 

Overall, both the absolute difference in GHG emissions from enteric fermentation and total GHG 

emissions between organic and conventional farms are relatively small. The average GHG emission 

stemming from manure management is on average slightly higher for organic farms in the dataset, 

which can be due to the fact that more organic farms have a tendency to have deep litter stables, 
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which are associated with significantly higher emission factors than other stable systems. Based on 

the Wilcoxon test, the difference is not significant. However, the p-value for the test is not highly 

insignificant with a p-value of 0,15. 

 

There are no structural differences in how the GHG emission variable is estimated for organic 

versus conventional farms. However, it is still worth noticing that there might be factors, between 

organic and conventional farms, that could alter the difference in the GHG estimation across the 

two production types. This could be structural differences in feed composition and the number of 

days each cattle spend on grass which the estimation of GHG emissions on farm level does not 

capture.  

 

The organic farms have significantly higher revenue from both milk and other outputs per cattle, 

but also higher total cost per cattle. This indicate that organic farms generally produce more cost 

intensively but at the same time manage to achieve a relatively higher level of revenue. This implies 

that it is not only the GHG emissions which drives the difference between the two types of 

production, but that it is also affected by different cost/revenue structures.  
 

Other benchmarking analyses have included both organic and conventional Danish dairy farms 

within the same benchmarking model (see e.g. Asmild (2019)). An argument for keeping organic 

and conventional dairy farms in the same benchmarking model could be that if organic farms are in 

general shown to be relatively more efficient, then there should be an incentive for other farms to 

restructure their farms to an organic production. However, there might not be a socioeconomic 

interest in having a sector consisting of either only organic or conventional farms. Because of the 

natural constraint in land, it might not be possible to convert all farms to organic farms with the 

existing technology of today. This is especially because organic livestock require a relatively larger 

area for feed production relative to conventional farms (Paalberg, 2013). 

 

Furthermore, keeping both conventional and organic farms in the same model implies that convex 

combinations of these are feasible, which in reality might not be the case. Both required standards 

and consumer preferences vary across the two types of production, and a convex combination of 

these is thereby hard to interpret.  
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For the remaining analysis organic and conventional farms are therefore handled in separate 

models.  

B.3.3 The benchmarking model 

A weak disposability model with a directional distance function assuming constant returns to scale 

(CRS) is used in the empirical analysis. CRS is assumed as it gives incentives to operate at the 

optimal scale. With a competitive market, such as that for dairy, each farm should be operating at 

the optimal scale and should thereby not be compensated in terms of efficiency for operating at a 

non-optimal scale. Furthermore, the VRS formulation of this specific model is not yet well-defined 

in the literature (Leleu, 2013) and could thereby potentially be estimated incorrectly.  

 

The model for the empirical analysis is specified as illustrated in B.3-1, following the notation from 

section B.2.3. 

 

 

For the efficiency analysis, the output-oriented radial vector is defined using the farms’ own output-

quantities. The directional vector takes three different forms as illustrated in Table B.3-1. 

 

max𝛽
𝜆  𝑘, 𝛽

 

𝑠. 𝑡. 

∑𝜆  𝑘𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑘
𝐾

𝑘=1

≥ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑘´ + 𝛽𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑘´  

 ∑ 𝜆 𝑘𝐺𝐻𝐺𝑘 

𝐾

𝑘=1

= 𝐺𝐻𝐺 𝑘´ − 𝛽𝑔𝐺𝐻𝐺𝑘´  

∑𝜆 𝑘𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑘 

𝐾

𝑘=1

≤ 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑘´ − 𝛽𝑔𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑘´  

𝜆 𝑘 ≥ 0 𝑘 = 1,… , 𝐾  

B.3-1 
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In the following it is explored whether any of the efficient farms from the models that should be 

treated as outliers. 

 

B.3.3.1 Outlier detection of the model 
 

It has been pointed out by several researchers that one of the weaknesses of the non parametric 

framework Data Envelopment Analysis is that it is very sensitiv to outliers see e.g. Khezrimotlagh 

(2013). Various of tools have been developed to identify outliers in a DEA set-up. The most 

widespread method to identify outliers is the so-called super efficiency measures proposed by 

Bankers and Chang (2005). However, these measures do not have a straightforward interpretation 

for the weak disposability model with the directional distance function and are not easily 

implemented in the available software. Therefore, for this empirical analysis the efficient units 

which constitute the frontier, have been excluded from the model one by one to examine how they 

affect both the average inefficiency scores and the average frontier shadow prices i.e. the shape of 

the frontier.  

 

As the dataset has already been cleaned with the purpose of obtaining a homogenized sample, it 

should not contain any outliers. However, as efficiency analyses are very sensitive to outliers, an 

outlier detection of the model itself has been carried out. 

To ensure that observations are not wrongly identified as outliers, four criteria for being an outlier 

in the model has been defined:  

 

1) When removing the observation from the model, it should have a relatively large impact on 
the mean inefficiency (𝛽′𝑠) of the model. 
 

2) When removing the observation, it should have a relatively large impact on the mean 
frontier shadow price. 
 

3) The observation removed should be a peer for a relatively large number of observations.  

 

4) It should be possible to see graphically that the observation might be an outlier.   

 

If a farm affects the model within all four criteria, the farm is assessed to have a too large impact on 

the overall results of the model and is thereby categorized as an outlier and excluded from the final 
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model estimation. The outlier identification is in this analysis a rather restrictive process, where the 

farm under analysis must influence the model to a relative great extent, as the farms following the 

data cleaning should be comparable and relatively homogeneous.  

 

For simplicity the outlier detection has been carried out for the two mixed models for conventional 

and organic farms respectively. Nevertheless, the specific directional vector of the mixed models 

can be seen an average of the two extreme directions, and the results from the outlier detection 

using the mixed models do thereby to some extent capture the diversity of the two extreme models. 

If the two extreme models, only reducing GHG emissions or only increasing revenue were used in 

the outlier detection, the peers which influence the models would to a great extend be the peers 

located with either a relatively high revenue/cost ratio or low GHG/cost ratio. There are relatively 

few farms located at these areas and it is thereby harder to detect whether these are in fact outliers 

or representative for the sector when assessing the extremes.  

Thus, the mixed models for conventional and organic farms respectively have been estimated 

excluding the peers one at a time. The effects on both inefficiency and frontier shadow prices of 

excluding the given peer from the two models are reported in Table B.3-4 and Table B.3-5.  

 
Table B.3-4:Outlier detection for conventional farms 

Farm 
Mean 

inefficiency  

Change in mean 

inefficiency  

(pct.-points) 

Mean frontier 

shadow price 

(DKK) 

Change in 

mean frontier 

shadow price 

(DKK) 

Change in mean 

frontier shadow 

price (pct.) 

Time 

used as 

peer 

1 0,18 0,02 4.522 -1.321 23 pct. 1.033 

2 0,20 0,00 6.171 328 -6 pct. 1.007 

3 0,20 0,00 5.847 -0,73 0 pct. 40 

4 0,20 0,00 5.846 -3 0 pct. 5 

5 0,20 0,00 5.849 0 0 pct. 1 

 

From the table it can be seen that farm number 1, has a higher impact on both mean inefficiency 

and mean frontier shadow prices than the remaining efficient farms. The mean inefficiency 

decreases by approximately 2 pct.-points when excluding farm 1 from the estimation, whereas the 

mean inefficiency decreases by far less than 1 pct.-point when excluding one of the remaining 

efficient farms. For the frontier shadow prices, the mean shadow price increases by 22,6 pct. when 
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excluding farm 1 from the estimation. The results are partly driven by the fact that this farm is a 

peer for the majority of the observations. 

 
Figure B.3-2: Illustration of the frontier with and without outlier (conventional model) 

 
From the table it can be seen that farm number 1, has a higher impact on both mean inefficiency 

and mean frontier shadow prices than the remaining efficient farms. The mean inefficiency 

decreases by approximately 2 pct.-points when excluding farm 1 from the estimation, whereas the 

mean inefficiency decreases by far less than 1 pct.-point when excluding one of the remaining 

efficient farms. For the frontier shadow prices, the mean shadow price increases by 22,6 pct. when 

excluding farm 1 from the estimation. The results are partly driven by the fact that this farm is a 

peer for the majority of the observations. 

 

Figure B.3-2 displays the frontier for conventional farms with and without farm 1. The shape of the 

frontier changes relatively much by excluding farm 1, and it can be seen that it is located relatively 

isolated towards the north west. Therefore, as all four criteria for removing outliers are fulfilled for 

farm 1, the farm is excluded from the final conventional models presented in the following.  

 

When excluding farm 1 from the estimation new peers will now constitute the frontier. To ensure 

that the peers in a model excluding farm 1do not have the characteristics of being outliers, the 

outlier detection has been carried out once again following the same procedure as the initial outlier 



 69 

detection. The results from this second step, after farm 1 has already been excluded from the 

estimation, do not give a reason to exclude more peers. The results from this outlier detection is 

presented in Appendix B. 

 

Table B.3-5 and Figure B.3-3 displays an overview of the outlier detection for organic farms in the 

same way as for the conventional farms. From Table B.3-5 it can be seen that organic farm 1, and 3 

have the largest impact on the average frontier shadow prices. However, none of these farms affect 

the average inefficiency score greatly. 
Table B.3-5: Outlier detection for organic farms 

Farm 
Mean 

inefficiency 

Change in mean 

inefficiency 

Mean frontier 

shadow price 

(DKK) 

Change in mean 

frontier shadow 

price (DKK) 

Change in mean 

frontier shadow 

price (pct.) 

Time 

used as 

peer 

1 0,11 0,005 6.755 -393 5 pct. 144 

2 0,12 0,001 7.209 61 -1 pct. 112 

3 0,12 0,003 6.837 -333 5 pct. 85 

4 0,12 0,000 7.212 69 -1 pct. 47 

5 0,12 0,001 7.107 -93 1 pct. 10 

6 0,12 0,000 7.231 31 0 pct. 1 

 

From the graphical illustration of the organic frontier, farm 5 could potentially look like an outlier, 

as it is located with a relatively large distance to the surrounding farms. However, there are 

relatively few observations in the organic model in general, and especially few observations located 

in the area around farm 5. It is therefore difficult to determine whether this specific farm is an 

outlier, and as both the average inefficiency score and frontier shadow price do not change much 

when excluding the farm, this observation is not identified as an outlier.  
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Figure B.3-3: Illustration of frontier with and without outlier (organic model) 

 
 

The outlier detection has been carried out using a simple method which seeks to define how much 

each peer affect the results from the mixed models. However, it would be preferable to apply a 

more thorough method which could take differences in the directional vector into account. Such a 

method is currently not available for the specific model estimation of this thesis and it is outside the 

scope of this thesis to develop such a method. Nevertheless, outlier detection in this model 

specification could be a perspective for future research.   

 

B.3.3.2 Validation of the DJL package 
 

The specific models for the empirical analysis have been computed with the open sourced software 

R, using the source code of the shortage function from the DJL package (Lim, Package "DJL", 

2020) and adapting it to this empirical analysis. The DJL package is used as it is outside the scope 

of this thesis to program the specific model from scratch.  

 

There is generally not a wide range of software available for computing models such as those 

applied in this empirical analysis. This is likely due to the fact that this specific method for 

modeling undesirable outputs is still developing and widely discussed as referred to in section 

B.2.4. The DJL package used to estimate the models in this thesis is relatively new and has been 
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released this year. The package is thereby not yet widely used and reviewed. Therefore, the 

following section explores whether the package works as intended by validating the results in 

regard to parameters such as inefficiency scores and frontier shadow prices. 

 

The specific models for the empirical analysis have therefore been limited to only include three 

variables. This simplifies the model, making it more straightforward to verify the results both 

graphically and with simple mathematical calculations in order to ensure that the software package 

works as intended. 

 

Figure B.3-4 graphically displays the mixed models constructed with the DJL package in R plotted 

in two dimensions for both conventional and organic farms. From the figure it can be seen that the 

model is behaving as expected as the more efficient farms are placed north west, where both 

revenue is relatively high, and the GHG emissions are relatively low compared to the south east part 

of the plot.  

 
Figure B.3-4: Weak disposability technology with a directional distance function 

 
Note: The color gradients show the level in efficiency, where darker colors imply a higher efficiency level. 

 

Figure B.3-5 shows the weak disposability model with different directional distances (cf. Table 

B.3-1) for conventional and organic farms respectively. The colors of the farms correspond to the 
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respective frontier shadow prices for each farm. This implies that farms with the same color are 

projected onto the same part of the frontier having the same peers and frontier shadow prices. It can 

therefore be seen from the figures, that the farms are being projected in the predefined direction. In 

the GHG models farms are projected horizontally towards the frontier, implying that revenue is held 

fixed while only GHG emission are reduced. In the mixed models farms are projected diagonally 

towards north west, and in the revenue models vertically towards the frontier.  
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Note: The farm observations are colored in relation to different frontier shadow prices 

Figure B.3-5: The weak disposability model with three different directional distance functions: colored in relation to different frontier 

shadow prices 
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Furthermore, to ensure that the frontier shadow prices are correctly estimated in the models as 

𝜋𝐺𝐻𝐺
𝑘 

𝜋𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑘 , the unique slopes along the frontier have been calculated manually. For a specific facet in 

two dimensions (part of the frontier created by a convex combination of two efficient farms 

(peers))4 created by peer 1 and peer 2, the slope has been manually calculated as: ∆𝑟𝑒𝑣𝑒𝑛𝑢𝑒/𝑐𝑜𝑠𝑡
∆𝐺𝐻𝐺/𝑐𝑜𝑠𝑡

=

(𝑟𝑒𝑣𝑒𝑛𝑢𝑒1/𝑐𝑜𝑠𝑡1)−(𝑟𝑒𝑣𝑒𝑛𝑢𝑒2/𝑐𝑜𝑠𝑡2)
(𝐺𝐻𝐺1/𝑐𝑜𝑠𝑡1)−(𝐺𝐻𝐺2/𝑐𝑜𝑠𝑡2)

.  

 

It is found that the slope calculated manually in two dimensions corresponds exactly to the frontier 

shadow prices found by calculating the relative weights from the model estimation. This implies 

that the frontier shadow prices estimated from the DJL package for each farm by using the weights 

of GHG emissions (𝜋𝐺𝐻𝐺𝑘 ) and the weights of revenue (𝜋𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑘 ) do in fact correspond to the trade-

off found at the frontier and thereby the actual frontier shadow prices. 

 

Furthermore, as described in section B.2.4 the normalization constraint is given by equation B.2-8: 

∑ 𝜋𝑣,𝑚 𝑔𝑣,𝑚𝑘
′ −𝑀

𝑚=1 ∑ 𝜋𝑤,𝑗 𝑔𝑤,𝑗𝑘
′𝐽

𝑗=1 = 1. In this empirical analysis, this constraint is fulfilled for all 

farms projected onto the efficient part of the frontier. Nevertheless, for the few farms projected onto 

the inefficient part of the frontier, this constraint is not fulfilled, which is an implication of having 

𝜋𝑤,𝑗  unconstrained. 

 

For both models, an inefficient part of the frontier is defined, illustrated by the dotted lines in Figure 

B.3-5. However, the majority of the frontier is strongly efficient and only a minority of observations 

are projected onto the inefficient part. Nevertheless, (in)efficiency measures and frontier shadow 

prices for the specific farms which are projected onto the inefficient part of the frontier do not have 

a straightforward interpretation. These specific farms will thereby be excluded from the remaining 

empirical analysis in order to ensure that these farms do not affect the overall findings. For the 

conventional models, 2 farms have been removed from the mixed model and 3 from the revenue 

model. For the organic models, 2 farms have been removed from the mixed model and 7 from the 

revenue model. No farms are excluded from the GHG models as the horizontal projection in this 

model ensures that farms are only projected on to the strongly efficient part of the frontier.  

 
4 The facet with more than two variables might in reality consist of a convex combination of more than two peers. However, when 

illustrating it in 2 dimensions, there will only be two peers creating the facet.  
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B.4 Results  
This section covers the results from the empirical benchmarking analysis. The first part of the 

analysis includes results from the three different models: the GHG model, the mix model and the 

revenue model for both conventional and organic farms. The section is structured as follows. 

Firstly, the individual inefficiency terms (𝛽) for the farms, estimated from the different models, are 

presented. Secondly, the frontier shadow prices from both the conventional and organic models are 

presented, focusing on the variation of these across the different models. The variation in frontier 

shadow prices across the models, shows how the frontier shadow prices for the specific farms are 

very sensitive to the direction of the projection towards the frontier.  

The third part of the results presents the existing potentials within the dairy sector, given by the 

technological lag found through the different models. The potentials found from the revenue and 

GHG models are used to detect the average opportunity costs of abating GHG emissions for 

inefficient farms. The average opportunity costs are further analyzed by giving an example of a 

second stage analysis regarding which characteristics of a farm that are associated with relatively 

low abatement costs.  

The last part of the analysis shows an example of a second stage analysis of how to detect the 

characteristics of the farms performing at best practice. 

B.4.1 Inefficiency detected through the different models 

Figure B.4-1displays the distribution of inefficiency scores (𝛽) and the average inefficiency of the 

farms in the different models for conventional and organic farms respectively.  

The histogram of the inefficiency scores for the conventional model seems to be rather normally 

distributed around the average inefficiency score. The average inefficiency score for the GHG 

conventional model is 0,379 indicating that on average each farm can reduce their current level of 

GHG emissions with 37,9 pct. Similarly, this indicates that the average efficiency score from this 

model is 𝑒𝑓𝑓𝐺𝐻𝐺 =
1

1−0,379
 = 1,6 implying that farms on average produce 160 pct. of the efficient 

level of GHG. 

The average inefficiency for the Revenue conventional model is 0,308 i.e. farms can on average 

increase revenue by 30,8 pct. In this model, the efficiency score is dependent on the desirable 

output, revenue, and should thereby be calculated as 𝑒𝑓𝑓𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =
1

1+0,308
= 76,4 indicating that on 
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average farms produce 76,4 pct. of the efficient level of revenue. Thus, the efficiency terms are not 

directly comparable across the two models as the calculation is dependent on whether the focus is a 

desirable or undesirable output. Nevertheless, the inefficiency term 𝛽 represents the potential of 

either reducing GHG emissions or increasing revenue in both models and is therefore directly 

comparable across these models. 

 

Note: the black line is the average inefficiency score

Figure B.4-1: Distribution of inefficiency scores for conventional and organic farms 
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Conventional farms are on average more inefficient when measuring their potential in the GHG 

conventional model, compared to the Revenue conventional model. This indicates that farms are in 

general located further away from the frontier when assessing their level of GHG emissions, 

whereas farms are in general relatively closer to the frontier in regard to their level of revenue. 

Assessing inefficiency of the conventional farms in the Mix conventional model, farms have an 

average inefficiency score of 0,179 which implies that when the focus is simultaneously reducing 

GHG emissions and increasing revenue, farms have an average potential for doing both of 17,9 pct.  

 

When assessing the inefficiency scores for the organic farms, it can be seen that the inefficiency 

scores for organic farms are not as normally distributed as is the case for conventional farms. 

However, this is likely due to the fact that there are significantly fewer organic farms. The average 

inefficiency for the two extreme models GHG organic and Revenue organic are relatively similar 

with average inefficiency scores of 0,222 and 0,227 respectively. However, the average inefficiency 

for the Mix organic model is relatively lower with an average inefficiency score of 0,12. Similar to 

the models for the conventional farms, organic farms are relatively less inefficient when assessing 

inefficiency in a model which seeks to both reduce GHG emissions and increase revenue 

simultaneously. 

 

It should be noted that the inefficiency scores are not directly comparable across the conventional 

and organic models. The inefficiency for the different farms is measured relative to the frontier for 

either the conventional or organic farms. As the two frontiers differ across the two type of farms, 

the relative measure of inefficiency is not comparable between the two. 

B.4.2 Frontier shadow prices 

As described in section B.2.4, the slope of the frontier can be interpreted as a frontier shadow price. 

When a farm moves along the frontier, the slope describes the trade-off between the level of 

revenue and GHG emissions. That is, a slope of 4.496 which is found on a part of the frontier for 

conventional farms, implies moving to the left along the frontier and thereby reducing 1 ton of 

GHG will cause a loss of 4.496 DKK in revenue. This means that if a farm becomes efficient and 

thereby located on the frontier, the farm will have the frontier shadow price corresponding to the 
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slope of the part of the frontier where it is projected onto, as illustrated by the different colors on the 

figure. 

The frontier shadow prices thereby represent the trade-off between GHG and revenue for the farms 

operating at best practice i.e. the efficient farms and the current inefficient farms when they reach 

the frontier. Figure B.4-2 illustrates the potential distribution in frontier shadow prices for farms if 

they catch up with the frontier in models with different directional distance functions. The frontier 

shadow prices for the conventional and organic farms correspond to the graphical illustration of the 

models presented in Figure B.3-5. 

 
Figure B.4-2: Distribution of the frontier shadow prices with different directional distance functions 
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Overall, the results of the frontier shadow prices show that the distribution of these is highly 

dependent on the specific model. There are eight unique frontier shadow prices across the three 

conventional models. However, only six of them have a straightforward interpretation, as two 

unique frontier shadow prices (0 DKK/ton and -506 DKK/ton) represent the inefficient part of the 

frontier.  

 

The six remaining frontier shadow prices show that reducing one ton of CO2e is relatively costly 

with a minimum price of 966 DKK per ton and a maximum price of 10.085 DKK per ton. 

Assuming it is possible for all farms to operate at best practice, there will be a large difference in 

the distribution of the frontier shadow prices across the three models. In the GHG model, the three 

frontier shadow prices of 10.085 DKK per ton, 5.654 DKK per ton and 4.496 DKK per ton are the 

most frequent. In the mixed model, the majority of the farms are estimated to have a frontier 

shadow price of 4.496 DKK per ton. In the revenue, the three most frequent frontier shadow prices 

are 5.654 DKK per ton, 4.496 DKK per ton and 2.394 DKK per ton.  

 

The pattern is relatively similar for the organic farms. However, the organic farms do in general 

have relatively higher frontier shadow prices than those estimated for the conventional farms, even 

though the maximum frontier shadow price for conventional farms is higher. The maximum frontier 

shadow price for organic farms is estimated to be 9.278 DKK per ton of CO2e whereas the 

minimum frontier shadow price estimated at the fully efficient part of the frontier is 3.894 DKK. As 

were the case for the conventional farms, the frontier shadow prices are on average higher in the 

GHG model compared to the remaining two models. 

 

This implies that when farms become efficient by only reducing GHG emissions and keeping 

revenue fixed, this will lead to the highest cost of reducing 1 ton of CO2e. This is in line with what 

is normally assumed regarding increasing marginal abatement costs. When farms reach the frontier 

in the scenario where only GHG emissions are reduced, farms obtain a relatively low level of GHG 

emissions i.e. the farms have already abated a relatively large amount of GHG emissions. It is 

therefore evident that it will be more costly for farms to reduce the level of GHG emissions further 

in this scenario. 
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The different models, presented in Table B.3-1 have been estimated, with three different directional 

distance function with the purpose of showing the results’ sensitivity to the directional distance. In 

particular, the distribution in frontier shadow prices are highly dependent on the specific directional 

distance function (cf. Figure B.4-2). It is therefore crucial for the results, that the direction is chosen 

correctly in regard to the purpose of the analysis. If the only purpose is to find the maximum 

reduction potential of GHG emissions, a directional distance function only reducing GHG 

emissions is suitable. However, if the main purpose of the analysis is to maximize revenue without 

neglecting the negative effect of GHG emissions, a directional distance function only maximizing 

revenue is suitable. Lastly, by choosing a directional distance function both maximizing revenue 

and minimizing GHG, it is possible to examine to what extend farms are able to both reduce GHG 

emissions while simultaneously increasing revenue.  

B.4.3 Average opportunity costs for inefficient farms  

If the direction of projection is not necessarily given by the aim of the analysis, it could potentially 

be a relatively large drawback that the frontier shadow prices are so sensitive to the directional 

distance function. However, it is possible to eliminate the uncertainty of the frontier shadow prices 

for the inefficient farms by calculating average opportunity costs of abating GHG emissions. 

 

The average opportunity costs are calculated by comparing the maximum potential reduction of 

GHG with the maximum potential increase in revenue found in the two extreme models.  

 

In the revenue model, the inefficient farms can reach the highest possible economic benefit as only 

revenue is maximized while keeping GHG emissions fixed. This corresponds to being projected 

vertically upwards in Figure B.3-5. In order to reduce GHG emissions, it is necessary to give up 

some of this maximum possible increase in revenue. Therefore, the maximum economic potential 

gain for each farm in the revenue model is compared with the maximum possible reduction in GHG 

emissions estimated through the GHG model. This is done to see the potential trade-off by moving 

horizontally to the left rather than vertically upwards i.e. the average opportunity costs indicate how 

much potential revenue an inefficient farm must on average give up in order to reduce its GHG 

emissions as much as possible.  
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The maximum potentials are calculated by using the inefficiency terms 𝛽 from both the revenue and 

GHG models. The potential of increasing revenue is for each farm calculated by using the 

inefficiency term estimated from the model only increasing revenue. The potential of reducing 

GHG emissions is estimated by using the inefficiency term from the model only reducing GHG 

emissions. Thereby, the maximum potential is obtained by multiplying the different 𝛽′𝑠 from each 

of the model with the farms level of revenue and GHG respectively. Finding the farm-specific 

average opportunity cost is thereby done by dividing the maximum potential from the revenue 

model in DKK by the maximum reduction in GHG emissions from the GHG model. This leads to 

an opportunity cost expressing the average cost of reducing 1 ton of GHG in DKK as lost revenue.  

The average opportunity costs thereby represent an average abatement cost rather than the marginal 

shadow price, as the opportunity costs are calculated as the average reduction in revenue for the 

total possible decrease of CO2.  

 

Figure B.4-3 displays the distribution of the average opportunity costs for all farms both 

conventional and organic. For the conventional farms the range varies between less than 2.000 

DKK to more than 8.000 DKK and is centered around 4.500 DKK. There are significantly fewer 

organic than conventional farms. This can also be seen from the distribution of the average 

opportunity costs for organic farms in Figure B.4-3, where the estimated average opportunity costs 

do not display a normal distribution as is the case for the conventional farms. However, the average 

opportunity cost is generally higher for the organic farms, as almost all estimated average 

opportunity costs are above 4.000 DKK and the average cost is around 7.000 DKK per ton GHG.  
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Figure B.4-3: Average opportunity cost of reducing GHG emissions in DKK for inefficient farms 

 
Note: The black vertical lines represent the simple mean for each of the two models. 

 

By using the individual potentials for each farm in the dataset it is possible to estimate aggregated 

potentials across the entire dairy sector. The aggregated potentials from the different models 

represent the total possible reduction in GHG emissions and/or total possible increase in revenue 

across all farms given that each farm reach their full potential i.e. reach the frontier and thereby 

operate at best practice. 

 

In Table B.4-1 the total GHG and revenue potential for the entire sector is presented. The GHG 

potential is defined by the aggregated maximum potential reduction of GHG in tons. The maximum 

revenue potential is defined by the aggregated potential increase of revenue in DKK. The potentials 

represent the case where all farms produce at best practice which corresponds to catching up with 

the current technological lag defined in the model. The table shows the two type of potentials for 

the different models.  
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Table B.4-1: The potentials found from the different benchmarking models 

  Potential reduction in GHG emissions (tons) Potential Increase in revenue (1.000 DKK) 

  

Conventional 

farms 

Organic 

farms 
Total 

Conventional 

farms 

Organic 

farms 
Total 

GHG model 
584.003 54.596 638.599                                                                        

(37,9 pct.) (22,2 pct.) (35,4 pct.)    

Revenue model 
                                                                         2.633.737 351.302 2.985.039 

   (30,8 pct.) (22,7 pct.) (27,6 pct.) 

 

When the model only increases revenue, the aggregated potential for the entire sample is an 

increase in the total revenue of the sector of 2,99 billion DKK. This corresponds to each farm 

increasing their revenue with an average of 27,6 pct. This maximum potential increase in revenue, 

can only be reached by accepting the current level of GHG emissions and only focusing on revenue. 

On the contrary, by only focusing on reducing the GHG emissions from the farms, the reduction 

potential for the entire sample is reducing 638.599 tons of GHG corresponding to an average 

decrease of GHG emissions of 35,4 pct.  

 

For conventional farms, only reducing GHG emissions means that the maximum potential revenue 

increase of 2,63 bill. can no longer be obtained within the current technology of the sector. Thereby, 

the average opportunity cost for each reduced ton of GHG when only reducing GHG emissions will 

on average be 2.633.737.000 DKK
584.003 tons GHG

= 4.510 DKK per ton GHG given the existing technology. 

 

The corresponding average opportunity cost for the organic farms by using the GHG model in 

relation to the revenue model is 6.435 DKK. The estimated average opportunity cost of reducing 

GHG is generally higher for the organic farms than for the conventional farms. However, it should 

be noted that the organic farms tend to have a slightly lower GHG emission, which could be a 

reason why it is more expensive for organic farms to reduce GHG emissions. 

 

An OLS estimation has been conducted to see which characteristics that affects the farm-specific 

average opportunity costs for both conventional and organic farms. In the estimation, the average 

opportunity costs for the different farms have been regressed on certain farm characteristics (cf. 

Table B.4-2). The results can be used to see if there are some specific characteristics which are 

determinant for the volume of the average opportunity costs which varies across each farm. 
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Nevertheless, the explanatory variables in the estimation, are not necessarily representative for what 

should ideally be included in such analysis. However, this analysis serves as an example of how to 

conduct a second stage analysis using the average opportunity costs for the inefficient farms.  

 
Table B.4-2: OLS regression for average opportunity costs 

 
Dependent variable: Average opportunity costs 

  

 
Conventional farms Organic farms 

Number of cattle (100) -0,096 -0,677 

 p = 0,451 p = 0,390 

Milk (DKK)/Total outputs (DKK) -28,100*** -47,966*** 

 p = 0,000 p = 0,005 

Fixed costs/Total costs (pct.) 43,374*** 40,957*** 

 p = 0,000 p = 0,010 

Dairy cattle / All cattle (pct.) 9,373*** 6,223 

 p = 0,006 p = 0,718 

Ownership (other than private) -352,527*** -327,999 

 p = 0,000 p = 0,245 

Share of jersey cattle (pct.) 4,757*** 13,329*** 

 p = 0,000 p = 0,0001 

Share of cattle in a deep litter housing 

system (pct.) 
-8,182*** -20,889*** 

 p = 0,000 p = 0,00002 

Milk yield (liter/cow) 17,138*** 22,666 

 p = 0,00005 p = 0,282 

Years since converted to organic  9,656 

  p = 0,354 

Constant 
-28,100*** 9.227,933*** 

p = 0,000 p = 0,00001 

R2 0,351 0,259 

Adjusted R2 0,346 0,222 

Residual Std. Error 589,303 (df = 1031) 1.091,185 (df = 181) 

F Statistic 69,783*** (df = 8; 1031) 7,012*** (df = 9; 181) 

Note: *p<0,1; **p<0,05; ***p<0,01  
 

 

There are a range of farm characteristics affecting the average opportunity costs. For conventional 

farms, the regression indicates that the following variables are negatively correlated with the 

average opportunity costs for the inefficient farms: the share of revenue originated from milk, 

having another ownership than private and the share of cattle in a deep litter housing system. This 
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implies that farms with e.g. a high share of deep litter housing systems tend to have a lower average 

opportunity cost i.e. a lower average abatement cost of reducing GHG emissions. It is thereby 

cheaper for these types of farms to reduce their GHG emissions. In contrast, the regression indicates 

that inefficient farms with a higher share of fixed costs, dairy cattle and jersey cattle as well as a 

higher yield (technical efficiency) tend to have higher average opportunity costs. 

 

In the OLS regression for the organic farms, less of the characteristics have a significant effect on 

the average opportunity costs. This might be due to the fact that there are fewer observations for 

organic farms. Nevertheless, from the regression it can be seen that farms with a higher share of 

revenue originating from the milk production and a higher share of deep litter housing systems tend 

to have lower average opportunity costs. This implies that for inefficient farms with these 

characteristics it is cheaper to reduce GHG emissions. Contrary, inefficient farms with a higher 

share of fixed costs and a higher share of jersey cattle seems to have a higher average opportunity 

cost. 

 

Gathering this information makes it possible to detect whether there are specific parts of the dairy 

sector where it is less costly to reduce GHG emissions than others. Dependent on the type of 

regulation, that will be adopted to ensure the desired reduction in GHG emissions in the agricultural 

sector, it can be crucial to obtain knowledge about which specific type of farms that are able to 

reduce its GHG emissions at the lowest cost. With this knowledge, it is possible to design a future 

regulation such that the incentives for reducing the emissions are targeted towards farms where the 

cost of doing so is lowest. 

B.4.4 Reaching the potentials - a second stage analysis using Tobit regression 

The Danish agricultural sector experiences a decreasing ratio between output and input prices, 

increasing international competitiveness and an external pressure from consumers, institutions and 

governments worldwide to produce more climate friendly. Therefore, there is a need for the sector 

to constantly increase productivity while simultaneously decreasing the climate footprint from the 

agricultural sector.  
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The benchmarking model estimated in this empirical analysis captures the interaction between 

economic and climate performance within the dairy sector and provides information of the relative 

efficiency for each farm in regard to both areas. A second stage analysis of what drives the level of 

(in)efficiency has been conducted using a Tobit regression. The Tobit model regresses the 

inefficiency term 𝛽 for the different estimated models, on variables describing different 

characteristics of the farms. The variables are similar to those used in the second-stage regression 

using average opportunity costs. In addition to these, three variables describing costs to consulting 

has also been included in this second stage with inefficiency scores as the dependent variable.  

 

The second stage analysis serves as an example of how the estimated measures of relative 

(in)efficiency from the benchmarking models can be used to extract information regarding what 

drives (in)efficiency in the Danish dairy sector when benchmarking both economic and climate 

performance. This provides information of how the inefficient farms can catch up with the current 

technological lag. The estimation might not be fulfilling for which characteristics are the most 

relevant to include in such an analysis, and other relevant measures could potentially be included.  

 

Table B.4-3 and Table B.4-4 show the Tobit regression for inefficiency scores (𝛽′𝑠) for 

conventional and organic farms respectively. The analysis is carried out using the two extreme 

models where the directional distance function only seeks to either reduce GHG emissions or 

increase revenue. Both of the extreme models are included to examine whether there are differences 

in what drives (in)efficiencies dependent on which extreme direction farms are projected onto the 

frontier. 

 

The estimates in the tables are reported as the average partial effects (APE) of the given variables. 

The average partial effects are calculated as described in section B.2.5. The original coefficients 

from the Tobit models are presented in Appendix C. The p-values of the original coefficients are 

reported alongside the APE estimates in Table B.4-3 and Table B.4-4.  
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Table B.4-3: Tobit regression for inefficiency scores for conventional farms 

 Dependent variable: Inefficiency score 

 
GHG Rev 

 
APE P-value APE P-value 

Number of cattle (100) -0,0001 p = 0,000*** -0,0001 p = 0,000*** 

Milk (DKK)/Total outputs (DKK) 0,0090 p = 0,000*** 0,0085 p = 0,000*** 

Fixed costs/Total costs (pct.)# 0,0020 p = 0,000*** 0,0038 p = 0,000*** 

Dairy cattle / All cattle (pct.)# -0,0046 p = 0,000*** -0,0051 p = 0,000*** 

Ownership (other than private)## -0,0399 p = 0,000*** -0,0453 p = 0,000*** 

Cost to consulting - production 

(1.000 DKK) 0,0000 p = 0,970 -0,0001 p = 0,643 

Cost to consulting - cattle 

(1.000DKK) 0,0001 p = 0,107 0,0000 p = 0,772 

Cost to consulting - economic 

(1.000 DKK) 0,0000 p = 0,350 -0,0001 p = 0,044*** 

Share of jersey cattle (pct.)# -0,0010 p = 0,000*** -0,0009 p = 0,000*** 

Share of cattle having a deep litter 

housing system# 0,0022 p = 0,000*** 0,0025 p = 0,000*** 

Milk yield (liter/cow/day)# -0,0014 p = 0,002*** -0,0009 p = 0,098* 

Observations 1.049  1.046  

Note: *p<0,1** p<0,05 ***p<0,01 

#: Variables describing a percentage/share are specified as the percentage number. For a 
percentage of e.g. 20 pct. the variable is thereby 0,2*100=20. 
##: The variable ownership is a dummy variable taking the value 0 for personally ownership, and 1 
for either partnership or limited ownership. Thereby the baseline is private ownership and the two 
variables in the table is the effect of another ownership relative to private ownership.   
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Table B.4-4: Tobit regression for inefficiency scores for organic farms 

 Dependent variable: Inefficiency score 

 
 

GHG REV 

  APE P-value APE P-value 

Number of cattle (100) -0,0002 p = 0,00002*** -0,0002 p = 0,00003*** 

Milk (DKK)/Total outputs (DKK)# 0,0081 p = 0,000*** 0,0081 p = 0,000*** 

Fixed costs/Total costs (pct.) # 0,0008 p = 0,274 0,0015 p = 0,179 

Dairy cattle / all cattle (pct.) # -0,0077 p = 0,000*** -0,0096 p = 0,000*** 

Ownership (other than private) ## -0,0144 p = 0,272 -0,0198 p = 0,338 

Cost to consulting - production 

(1.000 DKK) 
0,0003 p = 0,343 0,0004 p = 0,341 

Cost to consulting - cattle 

(1.000DKK) 
0,0003 p = 0,010** 0,0003 p = 0,068* 

Cost to consulting - economic (1.000 

DKK) 
-0,0001 p = 0,551 -0,0001 p = 0,346 

Share of jersey cattle (pct.) # -0,0016 p = 0,000*** -0,0017 p = 0,000*** 

Share of cattle having a deep litter 

housing system (pct.) # 
0,0028 p = 0,000*** 0,0032 p = 0,000*** 

Milk yield (liter/cow/day) # -0,0049 p = 0,00001*** -0,0057 p = 0,0001*** 

Year since converted to organic  -0,0020 p = 0,0001*** -0,0025 p = 0,0004*** 

Observations 204  195 
 

Note: *p<0,1** p<0,05 ***p<0,01 

#: Variables describing a percentage/share are specified as the percentage number. For a percentage of 
e.g. 20 pct. the variable is thereby 0,2*100=20. 
##: The variable ownership is a dummy variable taking the value 0 for personally ownership, and 1 for either 
partnership or limited ownership. Thereby the baseline is private ownership and the two variables in the 
table is the effect of another ownership relative to private ownership. 

 

Overall, the second stage analysis of what drives efficiency for dairy farms, indicates that there are 

not great differences across the two extreme models and across organic and conventional farms. 

Furthermore, a large part of what drives efficiency in the benchmarking model, where climate 

performance is evaluated alongside economic performance, is in line with what generally drives the 

economic performance of the sector. Factors such as increasing the size and technical performance 
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of farms as well as changing the ownership structure away from personally owned, seems to be 

factors that are both relevant when assessing economic and climate performance. 

 

In the following, the effect of all variables included in the Tobit models will be commented and 

compared across the two extreme models to get an indication of what drives (in)efficiency in the 

different models. 

 

The number of dairy cattle (100 cattle) is estimated to have a negative and significant effect on 

the inefficiency score 𝛽 in both of the models for both the conventional and organic farms. This 

indicates that increasing the herd size leads to lower inefficiency. However, even though the 

estimates are significant, the volume of the APE of number of dairy cattle is small. 

The APE estimate for the conventional farms in the GHG model is -0,0001 implying that increasing 

the number of dairy cattle with 100 will on average decrease the inefficiency of a farm with 0,01 

pct.-points. The specific estimate of APE is relatively similar across all the estimated models, 

implying that the tendency is present for both conventional and organic farms independent of which 

direction farms are projected in.  

 

This is in line with what is found when assessing only the economic performance of the sector 

without taking climate into consideration. The Danish Agricultural and Food Council (DAFC) state 

that dairy farms generally utilize economies of scale and are specializing to become competitive on 

the international market. Therefore, the general tendency within the sector is that the number of 

farms is decreasing while the size of the farms increases (Danish Agriculture and Food Council, 

2018).  

 

The variable Milk (DKK)/total outputs (DKK) represents the ratio between revenue generated 

from milk relative to total revenue from both milk and other outputs. The higher the ratio, the more 

of a farm’s total revenue is generated from milk. This variable is positive and significant in all 

models, implying that the more revenue that is generated from milk relative to other outputs, the 

more inefficient the farm is. The average partial effect from the GHG model for conventional farms 

is 0,009 and for the revenue model 0,0085. This implies that increasing the share of total revenue 

generated from milk with one pct.-point, leads to an average increase in inefficiency of 0,09 pct.-

points and 0,85 pct.-points in the GHG and revenue model respectively.  



 90 

The pattern is quite similar for the organic farms with an average partial effect of approximately 

0,0081 in both models. It was expected to find a positive relationship between this variable and 

inefficiency, as the GHG emissions in the model are only estimated based on the dairy production. 

Revenue generated from other outputs are not related to any GHG emissions in the estimation from 

Part A and farms are thereby rewarded unintendedly for producing other outputs than dairy. It 

would therefore have been optimal to estimate a model where either GHG emissions related to other 

outputs were also included in the model, or where farms were only benchmarked on the specific 

inputs and outputs related to the milk production. 

However, it has not been possible to specify which costs that are specific to the production of milk 

and which costs that are specific to other outputs. Excluding other outputs from the models without 

excluding the corresponding costs for these outputs could lead to farms being evaluated wrongly as 

inefficient.  

The significance of the estimate does thereby not necessarily mean that dairy farms should increase 

their production of other outputs but is rather an indication of the drawback of the model in relation 

to the GHG estimations. 

 

The estimate for the variable fixed costs/total costs is positive in both regressions for the 

conventional farms. This implies having more capital tied in long term investment relative to 

variable costs tends to decrease the level of efficiency. The effect of increasing the share of fixed 

costs is higher in the revenue models for both conventional and organic farms. However, the effect 

is not significant in both organic models. For conventional farms, the average partial effect of 

increasing the share of fixed costs by 1 pct.-point is an average increase in inefficiency of 0,2 pct.-

points in the GHG model and 0,4 pct.-points in the revenue model. A relatively high share of fixed 

costs indicate that a farm has a relatively high share of long-term investments such as buildings, 

machinery and land, which cannot be adjusted due to change in demand in the short run.  

 

The agricultural sector is generally characterized by having a relatively high share of fixed costs as 

the production requires a great amount of land and machinery. Therefore, it is often seen that that 

larger farms have increased their performance by having a high financial gearing which can be 

necessary in order to invest in the necessary land and machinery in general. Farms with more than 

400 cows have in average a solvency ratio on 1,6 pct. meaning that only 1,6 pct.- of the assets are 

financed with equity and the rest is financed with debt. Smaller farms with less than 100 cows have 
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in contrast a solvency ratio on 40,7 pct. (SEGES, 2018). This indicates that larger farms generally 

operate with higher risk than small farms.  

 

The estimate for Dairy cattle/all cattle represents the composition of cattle on the specific farm. 

This estimate is negative, thus increasing the number of dairy cattle in relation to all cattle decreases 

the inefficiency score. This can be driven by the fact that dairy cattle must be assumed to create 

more revenue than other cattle. However, the GHG emissions estimated in this analysis are closely 

correlated with the amount of dairy cattle per farm, which could imply that having a larger share of 

dairy cattle would lead to higher inefficiency. Nevertheless, even though a relatively large part of a 

farms GHG emissions originates from dairy cattle, the corresponding revenue generated from dairy 

cattle seems to outweigh the damage from GHG emissions. 

 

The average partial effect of the share of dairy cattle in relation to all cattle for conventional farms 

is -0,0046 and -0,0051 in the GHG and the revenue model respectively. This implies that increasing 

the share of dairy cattle relative to all cattle with 1 pct.-point leads to an average decrease in 

inefficiency of 0,46 pct.-points in the model only reducing GHG. In the revenue model, increasing 

the dairy cattle share with 1 pct.-point leads to an average decrease in inefficiency of 0,51 pct.-

points. The APE estimates for organic farms are -0,0077 and -0,0096 for the GHG model and the 

revenue model respectively.  

 

Overall, changing the composition of cattle might create a potential increase in efficiency. 

Nevertheless, it must still be acknowledged that in order to sustain a dairy production there is a 

need for having other cattle types such as calves, heifers, studs and bulls. 

 

The variable Ownership is a binary variable taking the value 0 if the farm is personally owned and 

1 if the farms has another ownership structure such as grouped partnership and limited ownership. 

The base for this variable is thereby personally ownership and the estimate are the effect on 

inefficiency of having another ownership. This estimate is not significant for the organic farms but 

is significant on a 5 pct.-level for the conventional farms. This implies that having another 

ownership than personal leads to a decrease in inefficiency in both the GHG model and the revenue 

model for the conventional farms. For these farms, having another form of ownership than personal 
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ownership leads to an average decrease in inefficiency of approximately 4 pct.-points in the GHG 

model and approximately 4,5 pct.-points in the revenue model.  

This is in line with what SEGES finds, that when assessing the operating profit, the least profitable 

ownership structure is personal ownership (SEGES, 2018), which is in line with the results found in 

this analysis. 

 

Other ownership structures than personal might be more flexible to take on larger investments in 

e.g. new technology, increasing the scale etc. as the risk is diversified to more than just the personal 

owner. This could indicate that giving incentives to change the general ownership structure could be 

a tool for increasing efficiency within the Danish dairy sector and thereby catch up with some of the 

current technological lag for inefficient farms. 

 

Three variables describing the cost to consulting are included in the regressions, as it was assumed 

that these variables could have an impact on the level of inefficiency for the different farms. The 

three consulting variables describe the cost to production consulting, cost to consulting regarding 

cattle and cost to economic consulting. For the conventional farms the only variable that is 

significant on a 5 pct. level is cost to consulting in the revenue model. The average partial effect of 

the estimate is -0,001 implying that spending 1.000 DKK more on economic consulting will in the 

revenue model for conventional farms lead to an average decrease in inefficiency on 0,1 pct.-points. 

The estimate itself is relatively small but must be reviewed in relation to the aggregated spending 

on cost to economic consulting which is on average around 36.000 DKK in the sample of dairy 

farms. 

Therefore, there is an indication that if a farm wants to become more efficient, the farm should 

focus on economic consultancy rather than consultancy regarding the production which is not 

necessarily directly related to the profitability of the farms. It is also generally the picture that in the 

recent years there has been more focus on the profitability rather than the technical performance for 

the Danish agricultural sector (see e.g. Asmild (2019) & Danish Agriculture and Food Council 

(2018)).  

 

For the organic farms the estimates for cost to cattle consulting is significant on a 5 pct. level in the 

GHG model and a 10 pct. significance level in the revenue model. Both estimates are positive 

implying that using money on consultancy regarding cattle will on average lead to higher 
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inefficiency. This might be due to the fact that this type of consultancy is more related to technical 

efficiency than economic or climate efficiency.    

 

Consultancy for production is associated with consultancy regarding the technical efficiency i.e. the 

production itself and not necessarily the profitability of the farms. The technical efficiency is to a 

certain degree linked to the economic efficiency. However, it might also be the case that a too large 

focus on technical efficiency can be costly for the farms.  

Contrary, specific economic consultancy can be a driver for farms to become more profitable i.e. 

more efficient in their economic performance.  

 

The share of jersey cattle represents the share of all cattle that is of the breed jersey. The estimates 

for the variable are negative and significant in both the GHG and the revenue model. This implies 

that increasing the share of jersey cattle will on average lead to a decrease in inefficiency for both 

conventional and organic farms. By increasing the share of jersey cattle with 1 pct.-point, the 

inefficiency will on average decrease with approximately 0,1 pct.-points in both the GHG model 

and the revenue model for the conventional farms. Another way to interpret the estimate is that 

having only jersey and no heavy breed cattle will result in an average decrease in inefficiency of 10 

pct.-points in relation to only have heavy breed. For organic farms the equivalent estimates are -

0,16 pct.-points and -0,17 pct.-points. These estimates are also significant. 

 

The tendency of having a higher efficiency with more jersey cattle might be due to the fact that 

jersey cattle produces milk with higher protein and fat content and the milk can thereby be sold to a 

higher price. The jersey cattle have a lower emission factor per cattle compared to heavy breed. 

Therefore, when looking both at raising revenue and reducing greenhouse gas emissions, there 

could be an incentive to increase the share of jersey cattle. However, it should be noted that if all 

cattle are replaced with jersey cattle, it is not necessarily possible to satisfy the demand for milk. 

Furthermore, there might be other factors not accounted for in this analysis, which are relevant to 

look for e.g. does it require more land to produce the same amount of milk with only jersey cattle, 

and if that is the case, which kind of land is then used. If deforesting is taken place to release more 

land for cattle production, it might end up being a worse solution for reducing the GHG emissions 

to the atmosphere. 
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The variable Share of cattle having a deep litter housing system is included as the deep litter 

housing systems are related to the highest emission of GHG per cattle. Therefore, it is expected that 

having a higher share of these housing systems in relation to other housing system might decrease 

the efficiency level. The Tobit regression shows that this is indeed the case for both conventional 

and organic farms. The estimates for the deep litter variable show that going from a stable without 

any deep litter, to a housing system only including deep litter, will increase inefficiency with 

approximately 22 pct.-points and 25 pct.-points for the GHG and revenue model respectively for the 

conventional farms. For organic farms the same estimates are approximately 30 pct.-points in both 

of the extreme models.  

This implies, that farms can replace deep litter housing systems to become more efficient. However, 

animal welfare could be taken into consideration when replacing housing systems. Animal welfare 

has not been included in the estimated benchmarking models of this empirical analysis. However, it 

would be possible to integrate one or more variables expressing the level of animal welfare for a 

given farm. By including animal welfare as a desirable output in the benchmarking analysis, it 

might be possible that changing housing system would not decrease efficiency, as there exists a 

trade-off with animal welfare.  

 

The variable Milk yield is an indication of the technical efficiency of the dairy farms. The 

estimation shows that a higher milk yield leads to increased efficiency in general.  

As oppose to economic efficiency the technical efficiency gives an indication of the productivity of 

the farm. The technical efficiency is linked to the economic performance, but a high productivity is 

not always determined for a high economic efficiency. The estimates are significant across all 

models and have a negative relation with the inefficiency score. The average partial effect is -

0,0014 in the GHG model and -0,009 in the revenue model for conventional farms. For organic 

farms these average partial effects are -0,0049 and- 0,0057 respectively. This implies that e.g. 

increasing the milk yield with 1 liter per dairy cattle per day for organic farms will on average result 

in a decrease in inefficiency of 0,49 pct.-points in the GHG model. 

 

In the estimation for the organic farms, the variable years since converted to organic farming is 

included. The estimation indicates a relationship showing that the longer time a farm has been 

organic, the higher efficiency level. The estimate from the GHG model is -0,002 indicating that 
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when the years since a farm has converted to organic farming increase with one, the inefficiency in 

average decrease with 0,20 pct.-points in the GHG model and 0,25 pct.-points in the revenue model.  

This indicates that organic farms become better at increasing revenue and reducing GHG emissions 

as times goes. The transition to organic farming might be a costly and long-lasting process. It might 

be that the newer farms lack knowledge of how to produce as efficiently as those who have been in 

the production for a long time. Therefore, knowledge sharing between the newer and those who has 

been in organic farming for many years, could increase the overall efficiency level.  
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Discussion and perspectives for future research 

This thesis shows how benchmarking analysis can act as a tool for evaluating the effect of 

externalities alongside economic performance and provide abatement costs of these externalities. 

This can potentially be an important contribution as how to cost efficiently reduce GHG emissions 

in the agricultural sector and ultimately reach the national 70 pct. reduction target, which is widely 

discussed in the public and political debate.  

 

The analysis is conducted by firstly estimating farm-specific GHG emissions in order to implement 

these in an economic benchmarking model suitable for handling undesirable outputs. Due to the 

scope of the thesis, data availability and the fact that the literature, which provide the theoretical 

background for the benchmarking model itself, is still developing, there has been some limitations 

of the empirical analysis. Furthermore, the estimation of GHG emissions could potentially be 

improved by an interdisciplinary cooperation with e.g. engineers and biologists.  

 

The limitations, entailed by the above, and the results of the analysis are discussed in the following 

section. Furthermore, perspectives for future research to improve the method and analysis is 

suggested. The section is split in to two subsections regarding limitations and perspectives for; The 

benchmarking model and the GHG emissions. As the limitations of the GHG estimation from Part 

A influence the benchmarking model from Part B, the interaction between these are also addressed 

in each of the subsections. 

 

The benchmarking model 

According to the results found in the empirical benchmarking analysis, the abatement cost of 

reducing 1 ton of CO2e is much higher for dairy farms than the proposed tax on CO2e of 1.500 

DKK/ton. The size of the tax is estimated by the Danish Council on Climate Change as what the 

abatement cost will evidently be in order to reach the 70 pct. reduction target (The Danish Council 

on Climate Change, 2020). According to the results of this thesis, a tax of 1.500 DKK would not 

necessarily work as intended for the dairy sector. As reducing a ton of GHG is estimated to have a 

cost of approximately 4.000 DKK, or more dependent on the specific farm, farms would not have 

an incentive to reduce the GHG emissions. For the farms it will be less costly to pay a tax of 1.500 

DKK than to reduce a ton of GHG emissions. 
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In the estimation of farm-specific GHG emissions, GHG reducing technologies that might be 

implemented on different farms, are not accounted for. These could include measures such as the 

different technologies proposed in the Climate Partner ships for the agricultural sector (The Danish 

Agriculture and Food Council; COWI, 2020) i.e. better manure management in the form of 

automatic slurry leaching and/or covering slurry tanks. Unfortunately, data is not available on 

which reduction technologies that might be implemented on different farms. By including the effect 

of different technologies to reduce GHG the estimates might look different. 

As these technologies are not implemented in the GHG estimation, not all technology available 

today is necessary captured within the benchmarking model. However, It has not been possible to 

include the effect of specific actions, machinery etc. which could potentially already be in use for 

reducing the GHG emissions on a specific farm.  

 

Furthermore, if new technology for reducing GHG emissions becomes available, the abatement 

costs might decrease to a level lower than the proposed tax, giving the farms an incentive to invest 

in new technology if this tax is adopted. However, with relatively high abatement costs for the 

Danish dairy sector, the approach towards reducing GHG emissions could be research and 

development of new technology in order to reduce the abatement costs.  

It should also be noted, that independent of the level of the tax, the tax itself could create an 

incentive to develop or invest in new technology for reducing the GHG emissions and thereby the 

possible tax payments.  

 

The empirical analysis illustrates that there exists a large potential for reducing GHG emissions 

within the sector today, given that the inefficient dairy farms catch up with the current technological 

lag in the sector. Usually in benchmarking analyses, catching up with the technological lag will be 

thought of as being “costless” for the farms, as it indicates that the inefficient farms can, without 

increasing their costs, restructure their production in order to operate as the efficient farms. As it is 

assumed that it is feasible for all farms to operate at the frontier, this implies that inefficient dairy 

farms are able to increase revenue and/or decrease GHG emissions until they reach the frontier. 

However, as the empirical analysis also shows, reaching a specific point of the frontier will, for 

inefficient farms, always be associated with some sort of trade-off between potentially reducing 

GHG emissions or increasing revenue. Reducing GHG emissions are thereby not assumed to be 
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costless even for the inefficient farms, as actions taking towards reducing GHG emissions will 

always be done as oppose to initiating actions to increasing revenue. 

 

Two types of second stage analyses have been conducted using the results from the estimated 

benchmarking models. Firstly, a second stage analysis examining the difference in the farm-specific 

average opportunity costs and secondly a second stage analysis examining the relative inefficiency. 

However, the focus in this thesis has been to develop and test the model and its ability to estimate 

abatement costs of GHG emissions. Therefore, the second stages analyses serve more as an 

example on how to utilize the information obtained from the benchmarking model. 

 

By having the inefficient average opportunity costs for each farm, it has been possible to estimate 

an OLS regression to examine what is determinant for the average opportunity costs and which 

characteristics that tend to decrease these for the inefficient farms. This analysis only includes a few 

explanatory variables and could potentially be more complex to cover more characteristics of the 

farms. These characteristics should optimally be chosen such that they reflect parameters which are 

possible and desirable to change. The analysis could thereby detect where it is possible to pick the 

low hanging fruits within the sector by examining which types of farms, machinery, technology etc. 

that is associated with low abatement costs. 

 

The second stage analysis for inefficiency, gives an indication of what characterize the efficient 

farms and what actions can be taken for the inefficient farms to reach the frontier. The findings are 

generally similar across both the GHG and revenue model. The second stage analysis does therefore 

not provide specific information on how to structure an inefficient farm in order to move towards a 

specific direction. This is most likely since for both of the two models, inefficient farms are 

generally located similar i.e. towards the south-east in the two-dimensional illustration of the 

production possibility set. Even though there might be some differences in the specific 

(in)efficiency score of a given farm across the two models, it is generally the same farms which are 

located close to the frontier. This is thereby rather independent of which specific direction, towards 

the north-west, the farms are projected in. It would be interesting to use a method which provides 

different characteristics of the farms, dependent on their location (i.e. if they are located with high 

revenue and low GHG emissions, or with low revenue and high GHG emissions). Such an analysis 
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could potentially provide even more specific knowledge of how farms should structure their 

production in order to reach a specific part of the frontier. 

 

The benchmarking model for the empirical analysis is output oriented, indicating that input for the 

dairy farms (total costs) are kept fixed while maximizing the desirable output (revenue) and 

minimizing the undesirable output (GHG emissions). However, as the different parts of the 

agricultural sector (including dairy farms) are generally characterized by being price takers, the 

possibility of maximizing revenue might be a questionable assumption. For price takers, output 

prices are fixed. This implies that a single dairy farm cannot itself influence the price of milk but is 

bound to the price determined on the world market. For price takers, profit maximization would 

thereby usually be done by minimizing costs rather than maximizing revenue. However, the 

benchmarking method applied in the empirical analysis allows for choosing the direction 

specifically. The method could even have been conducted non-oriented, meaning that the desirable 

output is maximized, the undesirable output is minimized and the input is minimized 

simultaneously. Nevertheless, for the specific empirical analysis of this report, an output-orientation 

allows for a clearer discussion of the trade-off between GHG emissions and revenue, and through 

that an estimation of the abatement cost of GHG emissions.  

 

The frontier of the benchmarking model is estimated by assuming that the undesirable output, GHG 

emissions, is weakly disposable. However, this assumption implies that a part of the frontier is no 

longer strongly efficient. The inefficient part of the frontier is not dominant for locations within the 

production possibility set. This part of the frontier represents a technology where there is a positive 

relationship between increasing the desirable output and decreasing the undesirable output. This 

implies that the shadow price of reducing the undesirable output is negative at this part of the 

frontier. Therefore, the benchmark for some observations is no longer intuitive in its interpretation.  

In the empirical analysis, the farms, which are projected onto the inefficient part of the frontier, are 

excluded from the results. However, only a minority of the dairy farms are projected onto the 

inefficient part of the frontier. The effect on the results from this drawback of the model is thereby 

not necessarily determinant for the results of this specific analysis. Nevertheless, it could be a 

potentially large limitation of the model, especially if the model includes more variables which 

could cause a larger part of the frontier to be inefficient. Choosing a direction which only seeks to 

minimize the undesirable output, ensures that no DMUs are projected onto the inefficient part of the 
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frontier. However, this projection might not always be desirable. It could therefore be necessary to 

research this area further in order to be able to apply the method in practice on different areas of 

analysis. 

 

A basic assumption of the benchmarking method used in the empirical analysis is comparability 

across the analyzed observations - in this case dairy farms. For an inefficient farm to reach their full 

potential, they must perform similar to what is done at the point where the farm is projected onto 

the frontier. This implies, that it must be possible for the inefficient farm to operate exactly like the 

specific combination of efficient farms it is measured relative to. The dataset for the empirical 

analysis is constructed such that only specialized dairy farms are included in the analysis. However, 

there might be reasons why it is either not possible for an inefficient farm to restructure their 

production. There might also be cases where it is not desirable for society that farms act 

accordingly. If the inefficiency of certain dairy farms can be explained by differences in framework 

conditions, such as geography, which can affect their maximum possible performance, it might not 

be reasonable to assume that these farms can perform at the same level as the efficient farms. 

Furthermore, if efficient farms are characterized by e.g. a specific livestock composition it might 

not be desirable (or possible) that all inefficient farms restructure their production according to this. 

In the analysis, having a higher share of dairy cattle leads to a higher level of efficiency. However, 

it might not be realistic for all farms to act as the efficient farms if it means reducing the general 

number of non-dairy cattle in the sector as a whole. 

 

The benchmarking model in the empirical analysis assumes constant return to scale for Danish 

dairy farms. As dairy farms operate on a competitive market, they should all be operating at the 

optimal scale. The measure of efficiency in the benchmarking model should therefore reflect this by 

not compensating farms based on their scale size. The assumption of CRS thereby gives all farms 

an incentive to operate at the most productive scale. However, this assumption could be discussed, 

if it is desirable to maintain a sector with farms of varying sizes, and the assumption of CRS could 

therefore be relaxed if more suitable for the aim of a given analysis. 

 

It should be noted that the estimation of the benchmarking model only covers the year 2017. 

However, a standard benchmarking model is not necessarily able to handle observations for more 

than one period, unless the model is created with the purpose of accounting for the special condition 
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of having multiple periods. This is the case, as the standard benchmarking model assumes that the 

observations can produce as convex combinations of other observations. However, including the 

same observations for two or more periods, might result in a frontier created by convex 

combinations of the same observation across multiple periods. This benchmark can be hard to 

interpret and might in reality not necessarily be feasible.   

However, it could still be possible to conduct a robustness check of the results found in this 

empirical analysis by computing the model using data for other years than 2017. It could be useful 

to conduct the analysis separately for several years, in order to verify the tendencies found from the 

estimation. Furthermore, for the results to act as a contribution to political decision making, it might 

be suitable to continuously estimate the model in order to follow the development in both 

efficiency, abatement costs as well as the technological development within the sector.   

 

The model could potentially also be conducted for other parts of the agricultural sector than just 

dairy. Estimating abatement costs across the entire agricultural sector could be useful in examining 

the diversity across the sector. Furthermore, the model could potentially also be used outside the 

agricultural sector as a tool for calculating abatement costs. By doing this, it is possible to compare 

abatement costs across sectors and detect which sectors that are generally characterized by having 

relatively low abatement costs. 

  

This thesis aims to verify the benchmarking method used in the empirical analysis, in order to make 

the method more reliable if it is expanded to be a more detailed benchmarking analysis, including 

more variables. As discussed earlier, it also possible to include factors such as animal welfare or 

environmental actions. By including animal welfare, it would be possible to detect the trade-off 

between improving animal welfare and increasing revenue, and thereby get a frontier shadow price, 

as well as an average opportunity cost of improving animal welfare. The trade-off between animal 

welfare and climate could also potentially be considered. 

 

GHG emissions 

The agricultural sector is characterized by being limited to the biological processes for both 

livestock and crops. This is a special characteristic of the agricultural sector which affects the 

development within the sector. There is a political goal for Denmark to be climate neutral by 2050. 

However, given the biological processes of livestock it is hard to imagine that livestock themselves 
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will not produce any greenhouse gases. Even by developing technology that can reduce the methane 

emissions from enteric fermentation, it might only be possible to reduce emissions, but not entirely 

eliminate the emissions. However, climate neutrality can still be reached within the agricultural 

sector if the emissions from e.g. livestock is offset by processes that capture CO2 such as 

afforestation and reforestation.   

 

Currently, the data foundation of GHG emissions on farm level is weak. However, the focus on 

estimating GHG emissions on a more disaggregated level is widely discussed. Most recently it has 

been discussed in relation to the proposal of imposing a general Danish CO2 tax and actions have 

been initiated to develop a tool for estimating farm-specific CO2 accounts in the agricultural sector. 

It is also currently debated to implement climate accounts across EU, where it will be required by 

law to conduct climate accounts on every farm in all EU countries in a harmonized way. This law is 

currently negotiated and is expected to be adopted at the end of 2020 (Kristensen, 2020).  

 

In this thesis, the IPPC guidelines have been used to estimate GHG emissions from different farms 

to include in the benchmarking. These estimations have been limited by the data availability and the 

relatively aggregated estimates of different components in the estimation. An example of this is the 

average value of digestibility of feed (DE) which regards the energy used for digesting feed. 

Ideally, values like this should vary per cattle, or alternatively simply per farm, to catch the 

variation across each farm. By having information on the different farm-specific feed schemes, it 

would be possible to estimate farm-specific DE.  

Another estimate, which could have been more precise and farm-specific, is the actual days cattle 

spend on grass. This most likely differs across farms and is especially assumed to vary between 

conventional and organic farms. Nevertheless, with the current data availability, the best practice is 

to use the average days on grass, which is used by both by DCE in the National Inventory Reports 

and by the Danish Council on Climate Change. Furthermore, the methane emissions from enteric 

fermentation are dependent on the weight, as well as the daily weight gain of the cattle. In the 

estimation of GHG emissions in this thesis, breed specific averages are used. However, in reality 

there might be differences both across farms, but also across the specific dairy cattle within a farm. 

Specific data for the weight of each cattle is not currently available and would require an additional 

data collection from the farms.  
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This specific data on the herd could improve the GHG emission estimates and provide further 

knowledge of the relative difference across the farms. Nevertheless, it should be noted that 

collecting more data would require the farms to measure and submit more data, which can be costly 

as it is time consuming. As there always exists a trade-off between the complexity of the farm-

specific data and the cost of collecting it, the added value of estimating more farm-specific GHG 

emissions should be weighed against the additional costs for the farms.  

  

In this thesis, the GHG emissions of the dairy farms have only been estimated taking the emissions 

stemming from enteric fermentation and manure management into account. These sources of GHG 

emissions represent the largest share of the total GHG emissions from dairy farms. However, there 

are also other sources of GHG emissions which could have been included in the estimation. Farms 

may also have GHG emissions related to e.g. agricultural soils which is linked to any possible 

cultivated soils the farm might have. However, as these are rather complex to estimate and have a 

relatively small effect on the aggregated GHG emissions, these are not included. Nevertheless, as 

emissions from agricultural soils only represent a minority of the aggregated GHG emissions of 

dairy farms, it would likely not have changed the pattern found in this analysis.   

 

Furthermore, the IPPC guidelines provided for estimating the GHG emissions from dairy farms do 

not consider the emission effects of the entire supply chain. Considering feed, some farms may 

import feed transported across a long distance, and thereby have a relatively larger carbon footprint. 

Land use and land use change and forestry (LULUCF) is neither included in the estimation. 

Therefore, the GHG estimations do not necessarily include the actual effect of using a large area of 

land for producing feed, or the alternative land use in the area. There are many components which 

could be taken into account and might be relevant in the estimation of GHG emissions on a 

disaggregated level, and the complexity of what to include is high. Furthermore, the results and the 

picture can change quite a lot dependent on the choice of what to include in the estimations of 

GHG.  

 

Another approach to estimate the GHG emissions is to use a Life Cycle Assessment (LCA) where 

the climate and environmental effects are measured throughout the entire life cycle of a given 

product e.g. feed. This type of estimation might give a more precise estimate of the actual emitted 

GHG to the atmosphere of a given product or production. However, with this measure it is difficult 
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to measure the share of the footprint actually reduced inside the national borders and LCA 

estimations are thereby not directly applicable in relation to the Danish reduction target of 70 pct. 

Nevertheless, the increasing greenhouse gases in the atmosphere is a global problem, and therefore 

all emissions around the world should ideally be included when estimating GHG emissions from 

Danish dairy farms. With that being said, measuring and reducing GHG worldwide might be too 

complex, and therefore it might be better to use a simpler and less precise approach than not being 

able to act because the issue it is too complex.  

 

Following the formulation of the Danish climate law, agreed on in 2020, the reductions of GHG 

must be carried out in a way where the GHG emissions are not merely transferred outside the 

Danish boarders, a problem also referred to as CO₂e leakage. The wording in the objectives of the 

legislative text is, that Denmark is to be a pioneer for the international climate effort and thereby 

inspire the rest of the world.  

 

When a country introduces actions to reduce GHG emissions, the inland reduction in emissions 

might not correspond 1:1 to the global reduction caused by the given actions. The leakage rate 

express how large a share of the decrease in inland CO₂e emissions are replaced by an increase of 

emissions in foreign countries (The Environmental Economic Council, 2019). 

 

The leakage rate is relatively high for the Danish agricultural sector (The Environmental Economic 

Council, 2019). This indicates that a relatively large share of the inland GHG reductions within 

agriculture, will be offset by an increase in emissions outside Danish boarders. This is highly due to 

the fact that a decrease in the consumption of Danish produced food goods, will not necessarily lead 

to an overall reduction in the food consumption within Denmark, as agricultural products are 

relatively inelastic. On the contrary, it might lead to an increase in the import and consumption of 

food produced in foreign countries with similar or even higher GHG emissions within the 

production. 

 

However, reducing GHG emissions in the agricultural sector will have a range of positive spillover 

effects, such as reducing the ammonia and nitrate leakage to the aquatic system (The Environmental 

Economic Council, 2019). Furthermore, Danish legislation to reduce GHG emissions from the 

agricultural sector might be complemented by similar international legislation. This could 
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potentially reduce the GHG emissions from foreign agricultural producers, and thereby reduce the 

leakage rate for the Danish agricultural sector. 
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Conclusion 

The aim of this thesis was to develop an applied benchmarking framework where GHG emissions 

are implemented in an economic efficiency analysis of the agricultural sector with the purpose of 

calculating farm-specific abatement costs of reducing GHG emissions.  

 

The framework is based on the theoretical non-parametric framework of Data Envelopment 

Analysis. A key element of the applied benchmarking model is its ability to handle the undesirable 

output GHG emissions by assuming weak disposability and using a directional distance function to 

measure the relative efficiency of Danish dairy farms. In order to be able to conduct this analysis, it 

has been necessary to dedicate a part of the thesis to estimate the farm-specific GHG emissions 

based on various data sources and suggested national and international guidelines. However, there 

is still a large potential and need for improving the farm-specific GHG estimations both in relation 

to method and data limitations, as farm-specific estimations of GHG emissions are crucial to any 

future regulation of the agricultural sector.  

 

The estimation of the GHG emissions could especially be improved by improving the data 

foundation for the estimation. This includes better use of the data already available today, as well as 

further collecting additional data on farm level. The interaction between climate accounts and its 

role in future regulation should therefore optimally be further developed in a corporation between 

multiple professional disciplines to ensure validity of the estimations of GHG emissions and its 

further use in regulation. 

 

The theoretical framework and empirical applications of the benchmarking model applied in this 

thesis is still developing and there is only limited software available for computing the specific 

model. The method is in the literature generally used to calculate frontier shadow prices of an 

undesirable output. This thesis proposes an additional way of estimating the abatement costs of 

inefficient farms by calculating the average opportunity costs of reducing the undesirable output.  

The frontier shadow prices, determined by the slope of the frontier, represent the trade-off between 

increasing economic performance or climate performance for the efficient farms. These frontier 

shadow prices can thereby be interpreted as the marginal price of abating a ton of CO2e when 

operating at best practice of what is currently technologically possible within the sector. As the 
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marginal frontier shadow prices changes along the frontier, the frontier shadow prices of inefficient 

farms are sensitive to the direction in which these are projected onto the frontier.  

The average opportunity costs can serve as a measure of the average abatement cost of GHG 

emissions for inefficient farms. The benefit of the average opportunity costs is that these are not as 

sensitive to the specific directional vector as is the case for the frontier shadow prices. 

 

The empirical analysis indicates that there currently exist improvement potentials on both climate- 

and economic performance for Danish dairy farms. There is a maximum potential in the sample of 

either reducing the aggregated GHG emissions with approximately 35 pct. corresponding to 

638.600 tons CO2e or increasing the aggregated revenue with approximately 28 pct. corresponding 

to 2,99 bill. DKK. These potentials are found by evaluating the current technological lag of the 

sector and assuming that all inefficient farms will eventually be able to catch up with this lag. 

 

The average opportunity cost of reducing one ton of CO2e is estimated to be 4.510 DKK across the 

conventional farms and 6.435 DKK across the organic farms. This indicates that on average the 

abatement costs of reducing GHG emissions are high within the Danish dairy sector compared to 

what is normally found as the abatement cost for GHG emissions in general. When assessing best 

practice within the sector, the frontier shadow prices also indicate that the reduction is very costly. 

The frontier shadow prices range between 966 DKK and 10.085 DKK for the conventional farms 

and between 3.894 DKK and 9.278 DKK for organic farms. However, it should be noted that only a 

minority of conventional farms are estimated to have a frontier shadow price below 2.394 DKK.  

 

Both the estimated frontier shadow prices and the average opportunity costs indicate that it is costly 

for dairy farms to reduce GHG emissions. However, given the national and international 

agreements on reducing GHG emissions, all sectors must eventually reduce their current level of 

emissions. A tool to accommodate the current national reduction target of 70 pct. is the proposed 

CO2 tax of 1.500 DKK per ton of CO2. A tax following the polluters pay principle, is a cost-

efficient way of reaching a socioeconomic optimal level of GHG emissions. The results found in 

this thesis implies that a tax of 1.500 DKK will not necessarily lead to the intended incentive for the 

Danish dairy farms, as the abatement cost is much higher than this tax. For the dairy sector to 

reduce their GHG emissions, it must therefore be acknowledged that this might be more costly than 

generally assumed.  
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If future regulation is not designed around a tax on CO2, the results from the second stage analysis 

can be used to detect in which areas of the sector, the abatement costs are in general relatively low. 

By utilizing this information, it is possible to target incentives such that the reduction of GHG 

emissions within the dairy sector is done where it is less costly.  
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Appendix A Norm figures for GHG estimation 
Table app. A 1: Average weight for dairy cattle 

 Average Weight (kg) Mature weight (kg) Growth per day (kg) 

Heavy breed 600 640 0,109 

Jersey 420 440 0,068 
 

Table app. A 2: Emission factors for manure management 

  Housing Systems CH4 
N2O 

Direct 

N2O 

Indirect 

Total GHG 

(CO2e) 

Dairy cattle - Heavy 

breed 

Tethered with urine and solid manure 11,702 1,034 0,161 649 

Tethered with slurry 27,908 1,149 0,179 1.093 

Loose-holding with beds, solid floor 23,377 1,066 0,166 952 

Loose-holding with beds, slatted floor 23,377 1,108 0,173 966 

Loose-holding with beds, slatted floor, scrape 23,377 1,087 0,169 959 

Loose-holding with beds, drained floor 23,377 1,129 0,176 973 

Deep litter (all) 118,980 2,448 0,191 3.761 

Deep litter, long eating space, solid floor 97,912 1,959 0,186 3.087 

Deep litter, slatted floor 97,912 1,976 0,188 3.093 

Deep litter, slatted floor, scrape 97,912 1,968 0,187 3.090 

Dairy cattle - Jersey 

Tethered with urine and solid manure 8,749 0,859 0,134 514 

Tethered with slurry 19,899 0,954 0,149 826 

Loose-holding with beds, solid floor 18,133 0,885 0,138 758 

Loose-holding with beds, slatted floor 18,133 0,920 0,143 770 

Loose-holding with beds, slatted floor, scrape 18,133 0,902 0,141 764 

Loose-holding with beds, drained floor 18,133 0,937 0,146 776 

Deep litter (all) 98,728 2,033 0,158 3.121 

Deep litter, long eating space, solid floor 79,124 1,339 0,154 2.423 

Deep litter, slatted floor 79,124 1,367 0,156 2.432 

Deep litter, slatted floor, scrape 79,124 1,353 0,155 2.427 

Heifer 0-6 months - 

Heavy breed 

Deep litter (all) 1,959 0,419 0,032 183 

Deep litter, solid floor 1,959 0,419 0,032 183 

Heifer 0-6 months - 

Jersey 

Deep litter (all) 1,534 0,316 0,024 140 

Deep litter, solid floor 3,564 0,316 0,024 191 

Heifer and stud 6-

27 months - Heavy 

breed 

Slatted floor-boxes 4,896 0,346 0,052 241 

Tethered with urine and solid manure 2,818 0,349 0,053 190 

Tethered with slurry 7,748 0,378 0,057 323 
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Loose-holding with beds, solid floor 6,037 0,338 0,051 267 

Loose-holding with beds, slatted floor 6,037 0,359 0,054 274 

Loose-holding with beds, slatted floor, scrape 6,037 0,349 0,053 271 

Loose-holding with beds, drained floor 6,037 0,369 0,056 278 

Deep litter (all) 30,825 0,827 0,063 1.036 

Deep litter, long eating space, solid floor 25,414 0,655 0,060 848 

Deep litter, solid floor 27,251 0,810 0,061 941 

Deep litter, slatted floor 25,414 0,663 0,061 851 

Deep litter, slatted floor, scrape 25,414 0,659 0,060 850 

Heifer and stud 6-

27 months - Jersey 

Slatted floor-boxes 4,999 0,260 0,039 214 

Tethered with urine and solid manure 2,369 0,262 0,040 149 

Tethered with slurry 6,175 0,284 0,043 252 

Loose-holding with beds, solid floor 5,396 0,254 0,038 222 

Loose-holding with beds, slatted floor 5,396 0,269 0,041 227 

Loose-holding with beds, slatted floor, scrape 5,396 0,262 0,040 225 

Loose-holding with beds, drained floor 5,396 0,277 0,042 230 

Deep litter (all) 26,139 0,630 0,048 855 

Deep litter, long eating space, solid floor 21,442 0,496 0,045 697 

Deep litter, solid floor 22,438 0,612 0,046 757 

Deep litter, slatted floor 21,442 0,502 0,046 699 

Deep litter, slatted floor, scrape 21,442 0,499 0,046 698 

Slatted floor-boxes 4,999 0,260 0,039 214 

Bull 0-6 months - 

Heavy breed 

Deep litter (all) 1,016 0,198 0,015 89 

Deep litter, solid floor 2,360 0,198 0,015 123 

Bull 0-6 months - 

Jersey 

Deep litter (all) 0,777 0,145 0,011 66 

Deep litter, solid floor 1,806 0,145 0,011 92 

Bull > 6 months - 

Heavy breed 

Slatted floor-boxes 2,038 0,159 0,024 106 

Tethered with urine and solid manure 1,583 0,164 0,025 96 

Tethered with slurry 4,717 0,178 0,027 179 

Loose-holding with beds, solid floor 3,104 0,159 0,024 132 

Loose-holding with beds, slatted floor 3,104 0,168 0,026 135 

Loose-holding with beds, slatted floor, scrape 3,104 0,164 0,025 134 

Loose-holding with beds, drained floor 3,104 0,173 0,026 137 

Deep litter (all) 14,861 0,387 0,029 495 

Deep litter, long eating space, solid floor 12,033 0,305 0,028 400 

Deep litter, solid floor 13,157 0,379 0,029 450 

Deep litter, slatted floor 12,033 0,309 0,028 401 

Deep litter, slatted floor, scrape 12,033 0,307 0,028 401 

Bull > 6 months - 

Jersey 

Slatted floor-boxes 1,615 0,127 0,019 84 

Tethered with urine and solid manure 0,828 0,128 0,019 65 
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Tethered with slurry 2,266 0,140 0,021 105 

Loose-holding with beds, solid floor 1,828 0,124 0,019 88 

Loose-holding with beds, slatted floor 1,828 0,132 0,020 91 

Loose-holding with beds, slatted floor, scrape 1,828 0,128 0,019 90 

Loose-holding with beds, drained floor 1,828 0,135 0,021 92 

Deep litter (all) 11,454 0,302 0,023 383 

Deep litter, long eating space, solid floor 9,102 0,237 0,022 305 

Deep litter, solid floor 4,118 0,295 0,022 198 

Deep litter, slatted floor 8,162 0,240 0,022 282 

Deep litter, slatted floor, scrape 9,102 0,239 0,022 305 
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Appendix B Outlier detection 
 

Table app. B 1: Second-step outlier detection for conventional farms 

Mean 

inefficiency  

Change in 

mean 

inefficiency  

(pct.-points) 

Mean frontier 

shadow price 

(DKK) 

Change in 

mean frontier 

shadow price 

(DKK) 

Change in 

mean frontier 

shadow price 

(pct.) 

Time used as 

peer 

0,17 0,004 4.686 165 -3,7 pct. 975 

0,18 0,003 4.372 -150 3,3 pct. 940 

0,18 0,001 4.779 259 -5,7 pct. 83 

0,18 0,000 4.506 -17 0,4 pct. 56 

0,18 0,000 4.515 -9 0,2 pct. 22 

0,18 0,000 4.522 -4 0,1 pct. 5 

0,18 0,000 4.526 0 0,0 pct. 1 
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Appendix C Estimates for Tobit regression 
Table app. c 1: Tobit regression for conventional farms 

 

Dependent variable: Inefficiency 

score 

  

 
GHG Rev 

Number of cattle (100) -0,0001*** -0,0001*** 

 
p = 0,000 p = 0,000 

Milk (DKK)/Total outputs (DKK) 0,009*** 0,009*** 

 
p = 0,000 p = 0,000 

Fixed costs/Total costs (pct.) 0,002*** 0,004*** 

 
p = 0,000 p = 0,000 

Dairy cattle / All cattle (pct.) -0,005*** -0,005*** 

 
p = 0,000 p = 0,000 

Ownership (other than private) -0,040*** -0,046*** 

 
p = 0,000 p = 0,000 

Cost to consulting - production (1.000 DKK) 0,00001 -0,0001 

 
p = 0,970 p = 0,643 

Cost to consulting - cattle (1.000DKK) 0,0001 0,00002 

 
p = 0,107 p = 0,772 

Cost to consulting - economic (1.000 DKK) -0,00005 -0,0001** 

 
p = 0,350 p = 0,044 

Share of jersey cattle (pct.) -0,001*** -0,001*** 

 
p = 0,000 p = 0,000 

Share of cattle having a deep litter housing system 

(pct.) 

0,002*** 0,003*** 

p = 0,000 p = 0,000 

Milk production per dairy cattle (liter/cow) -0,001*** -0,001* 

 
p = 0,002 p = 0,098 

Constant -0,045 -0,099** 

 
p = 0,152 p = 0,021 

Squarred correlation 0,51 0,44 

Observations 1.049 1.046 

Log Likelihood 1.449,6 1.138 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table app. c 2: Tobit regression for organic farms 

 
Dependent variable: Inefficiency score 

  GHG Revenue 

Number of cattle -0,0002*** -0,0003*** 
 

p = 0,00002 p = 0,00003 

Milk/Total outputs (DKK) 0,008*** 0,009*** 
 

p = 0,000 p = 0,000 

Fixed costs/Total costs (DKK) 0,001 0,002 
 

p = 0,274 p = 0,179 

Dairy cattle / all cattle -0,008*** -0,010*** 
 

p = 0,000 p = 0,000 

Ownership - partnership -0,015 -0,02 
 

p = 0,272 p = 0,338 

Cost to consulting - production (DKK) 0,0003 0,0004 
 

p = 0,343 p = 0,341 

Cost to consulting - cattle (DKK) 0,0003*** 0,0004* 
 

p = 0,010 p = 0,068 

Cost to consulting - economic (DKK) -0,0001 -0,0001 
 

p = 0,551 p = 0,346 

Share of jersey cattle -0,002*** -0,002*** 
 

p = 0,000 p = 0,000 

Share of cattle having a deep litter housing system 0,003*** 0,003*** 
 

p = 0,000 p = 0,000 

Milk production per dairy cattle -0,005*** -0,006*** 
 

p = 0,00001 p = 0,0001 

Years since converted to organic -0,002*** -0,003*** 
 

p = 0,0001 p = 0,0004 

Intercept 0,210** 0,371*** 
 

p = 0,024 p = 0,010 

Observations 

Log Likelihood 

204 195 

283 201 
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Squared correlation 0,68 0,53 

Note: *p<0.1; **p<0.05; ***p<0.01 
 

 

  



#================================================#

####---- Part A: Estimating GHG Emissions ----####

#================================================#

####---- Clearing environment ----####

# rm(list=ls())

final<- read_excel("farm_data") # farm specific data from Ø90 after datacleaning following Lillthorup 2017

####---- Formatting variables ----#####

final$X5120 <-as.numeric(final$X5120)

final$X5121 <-as.numeric(final$X5121)

final$X5110 <-as.numeric(final$X5110)

final$X5120<-as.numeric(final$X5120)

final$X5154<-as.numeric(final$X5154)

final$X5152<-as.numeric(final$X5152)

final$X5110<-as.numeric(final$X5110)

final$X5152<-as.numeric(final$X5152)

final$X5154<-as.numeric(final$X5154)

####---- loading packages ----####

library(readxl)

library(extrafont)

#### Loading data ####

Man <- read_excel("Data from the fertilizer accounts") # Data for housing systems related to manure management

Cattle_5 <- read_excel("Data from Statistics Denmark") # Data regarding the population of cattle in Denmark 2017

####---- Customizing fonts ----####

# library(extrafont)

# windowsFonts()

library(extrafont)

# font_import()

# y

# loadfonts(device = "win")

#----------------------------------------------------#

#####----------- Enteric fermentation -----------#####

#----------------------------------------------------#

####---- Weight figures for Dairy cattle ----####

# Standard values for the weight of dairy cattle

weight_heavy<-600 # Lund & Aaes (2016/2017)   

weight_jersey<-420 # Lund & Aaes (2016/2017)

Weights <-  cbind(c(600,420,510),c(640,440,540),c(40/365,25/365,(40/365+25/365)/2))

colnames(Weights)<-c("Average weight", "Mature weight", "Growth per day.  (kg)")

row.names(Weights)<-c("Heavy breed","Jersey","Mixed")

final$weight_mixed<-final$Andel_1*weight_heavy+final$Andel_3*weight_jersey

final$weight_mature_mixed<-final$Andel_1*Weights[1,2]+final$Andel_3*Weights[2,2]

final$Growth_mixed<-final$Andel_1*Weights[1,3]+final$Andel_3*Weights[2,3]

####---- NE_M: NE required for maintanence ----####

# Coefficient 

CF_i<-0.29256 # Volden 

final$NE_m<-0

for(i in 1:dim(final)[1]){

  if(final$X5100[i] == 1){

    final$NE_m[i]<-CF_i*(weight_heavy^0.75)}

  if(final$X5100[i] == 2){

    final$NE_m[i]<-CF_i*(weight_heavy^0.75)}

  if(final$X5100[i] == 3){

    final$NE_m[i]<-CF_i*(weight_jersey^0.75)}

  if(final$X5100[i] == 4){

    final$NE_m[i]<-CF_i*(final$weight_mixed[i]^0.75)}

}

####--- NE_a: Net Energy required for activity ---####   

# Coefficients  from IPCC table 10.5

Ca_pasture<-0.17

Ca_stable<-0

final$NE_a<- final$NE_m*Ca_pasture*(18/365) # Assumption: 18 days on grass on average

####--- NE_g: Net Energy required for growth ---####

# Coefficient from IPCC for dairy cattle

C_cows <- 0.8

final$NE_g_cows <- 0

for( i in 1:dim(final)[1]){

  if(final$X5100[i] == 1){

    final$NE_g_cows[i]<- 22.02*((Weights[1,1]/(C_cows*Weights[1,2]))^0.75)*(Weights[1,3])^1.097

  }

  if(final$X5100[i] == 2){

    final$NE_g_cows[i]<- 22.02*((Weights[1,1]/(C_cows*Weights[1,2]))^0.75)*(Weights[1,3])^1.097

  }

  if(final$X5100[i] == 3){

    final$NE_g_cows[i]<- 22.02*((Weights[2,1]/(C_cows*Weights[2,2]))^0.75)*(Weights[2,3])^1.097

  }

  if(final$X5100[i] == 4){

    final$NE_g_cows[i]<- 22.02*((final$weight_mixed[i]/(C_cows*final$weight_mature_mixed[i]))^0.75)*(final$Growth_mixed[i])^1.097

  }

}

####--- NE_l: Net Energy required for lactating ---####

# Converting the quantity of energy corrected milk to quantity of regular milk 

final$Milk_kv <- (((3140*final$X5118)/(383*final$X5120+242*final$X5121))/final$X5110)/365

final$NE_l <- final$Milk_kv*(1.47+0.4*final$X5120)

####---NE_p: Net Energy pregnancy--#### 

C_p<-0.1 # Coefficient from IPCC table 10.7

final$NE_p <- C_p*final$NE_m*(0.6*(284/365)
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                              )

####---REM---####

DE<-71 # From IPCC

final$REM  <-  1.123 -(4.092*10^(-3)*DE)+(1.126*10^(-5)*DE^2)-(25.4/DE)

####----REG----####

final$REG<- 1.164-(5.16*(10^(-3))*DE)+(1.308*(10^(-5))*(DE^2)-(37.4/DE))

####----GE----####

final$GE_Cows<- (((final$NE_m+final$NE_a+final$NE_l+final$NE_p)/final$REM) + (final$NE_g_cows/final$REG)) /(DE/100)   

# Histograms of GE for dairy cattle 

par(mfrow=c(1,3))

hist(final$GE_Cows[which(final$X5100==1|final$X5100==2 & final$year==2017)],breaks=20,main=NULL,xlim=c(200,500),xlab="Heavy breed",

     col="#8b9086",border="white",ylab="", 

     col.lab="#8b9086",family="Times New Roman",cex.lab=2,cex.axis=1.7)

#abline(v = mean(final$GE_Cows[which(final$X5100==1|final$X5100==2 & final$year==2017)]), col="black", lwd=3, lty=1)

hist(final$GE_Cows[which(final$X5100==3 & final$year==2017)],breaks=10,main=NULL,xlim=c(200,500),ylab="",xlab="Jersey",

     col="#46626f",border="white",col.lab="#46626f",

     family="Times New Roman",cex.lab=2,cex.axis=1.7)

#abline(v = mean(final$GE_Cows[which(final$X5100==3 & final$year==2017)]), col="black", lwd=3, lty=1)

hist(final$GE_Cows[which(final$X5100==4& final$year==2017)],breaks=20,main=NULL,xlim=c(200,500),ylab="",xlab="Mixed breed",

     col="#a4864b",border="white",col.lab="#a4864b",

     family="Times New Roman",cex.lab=2,cex.axis=1.7)

#abline(v = mean(final$GE_Cows[which(final$X5100==4 & final$year==2017)]), col="black", lwd=3, lty=1)

#####---- Number of cattle types in the dataset ----####

sum(final$X5154[which(final$year==2017)])

sum(final$Heifers[which(final$year==2017)])

sum(final$Baby_heifer[which(final$year==2017)])

sum(final$Baby_bull[which(final$year==2017)])

sum(final$X5152[which(final$year==2017)])

#-------------------------------------------------------------#

####---- CH4 Emission factors for enteric fermentation ----####

#-------------------------------------------------------------#

# Emission factors for dairy cattle

Ym<-6 # From national inventory

final$EF_CH4_Ent_Cow<- (final$GE_Cows*(Ym/100)*365)/55.65

mean(final$EF_CH4_Ent_Cow)

# Emission factors for non-dairy cattle - from National inventory report Table 5.7 - same across breeds

final$EF_CH4_Ent_Baby_Bull<-13.05  

final$EF_CH4_Ent_Baby_Heifer<-43.62  

final$EF_CH4_Ent_Bull<-21.38  

final$EF_CH4_Ent_Stud<-21.38

final$EF_CH4_Ent_Heifer<-55.51

####---- Total CH4 emissions from enteric fermentation for each farm ----####

final$CH4_Ent_Cow <- final$EF_CH4_Ent_Cow *final$X5110 

final$CH4_Ent_Baby_Bull<-final$EF_CH4_Ent_Baby_Bull*final$Baby_bull

final$CH4_Ent_Baby_Heifer<-final$EF_CH4_Ent_Baby_Heifer*final$Baby_heifer

final$CH4_Ent_Bull<-final$EF_CH4_Ent_Bull*final$X5154

final$CH4_Ent_Stud<-final$EF_CH4_Ent_Stud*final$X5152

final$CH4_Ent_Heifer<-final$EF_CH4_Ent_Heifer*final$Heifers

final$CH4_Ent_total<-(   final$CH4_Ent_Cow

                     +final$CH4_Ent_Baby_Bull

                     +final$CH4_Ent_Baby_Heifer

                     +final$CH4_Ent_Bull

                     +final$CH4_Ent_Stud

                     +final$CH4_Ent_Heifer

                     )/1000

final$GHG_Ent<-final$CH4_Ent_total*25

####---- GHG emissions from enteric fermentation in CO2e - only dairy cattle ----####

final$GHG_Only_cows<-(final$CH4_Ent_Cow/1000)*25

#####---- Total GHG emissions from enteric fermentation in CO2e ----#####

# across all farms for all cattle

sum(final$GHG_Ent[which(final$year=="2017")])

# Table for summary of CH4 emission factors - enteric fermentation

Ef_Ent_Table<-rbind(c(summary(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==1|final$X5100==2 )])[-3],

                      sd=sd(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==1|final$X5100==2 )]))

,c(summary(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==3 )])[-3],

   sd=sd(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==3)]))

,c(summary(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==4 )])[-3],

   sd=sd(final$EF_CH4_Ent_Cow[which(final$year==2017 & final$X5100==4)])))

rownames(Ef_Ent_Table)<-c("Heavy","Jersey","Mixed")

write.csv(Ef_Ent_Table, file = "Ef_Ent_Table.csv")

#-------------------------------------------------#

#####----------- Manure management -----------#####

#-------------------------------------------------#

# preparing data for housing systems

Man$Stable<-as.character(Man$Stable)

final$breed<-final$X5100

final$breed<-ifelse(final$breed==2,1,final$breed)

# Calculate individual CH4 emission factors for each farm 

# based on breed, housing system and composition of dairy vs. non dairy cattle types

Types<-c("Cow","Bull","Studs","Heifiers")

#----------------------------------------------------#

####---- CH4 emissions from manure management ----####

#----------------------------------------------------#

final$CH4_Cow<-0

final$CH4_Bull<-0

final$CH4_Studs<-0

final$CH4_Heifiers<-0

CH4_obs<-0

breed_1<-0

breed_3<-0

vektor=as.character(1:10)

####---- Ch4 emissions for Dairy cattle, bulls, studs and heifers ----####

for (i in 1:dim(final)[1]){

  

  if(final$breed[i]==1|final$breed[i]==3){

    for(k in Types){

      CH4_obs<-0

    for(j in vektor){

        

    CH4_obs<-final[,j][i]*Man$CH4[which( Man$Stable == j & Man[,2]==k & Man$Breed==final$breed[i])]

    final[,paste("CH4_",k,sep="")][i]<-final[,paste("CH4_",k,sep="")][i]+CH4_obs

    

     }}

  }



  if(final$breed[i]==4){

    

    for(k in Types){

      breed_1<-0

      breed_3<-0

    for(j in vektor){

    breed_1<-final[,j][i]*final$Andel_1[i] *Man$CH4[which( Man$Stable == j & Man[,2]==k & Man$Breed==1)]

    breed_3<-final[,j][i]*final$Andel_3[i] *Man$CH4[which( Man$Stable == j & Man[,2]==k & Man$Breed==3)]

    final[,paste("CH4_",k,sep="")][i]<-final[,paste("CH4_",k,sep="")][i]+breed_1+breed_3

        }

    }

  }}

#### Heifers < 6 months

final$CH4_Baby_heifer<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$CH4_Baby_heifer[i]<-Man$CH4[which(Man$Breed==final$breed[i] & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$CH4_Baby_heifer[i]<-final$Andel_1[i]*Man$CH4[which(Man$Breed==1 & Man$Type=="Baby_heifer" & Man$Stable ==7 )]+ 

      final$Andel_3[i]*Man$CH4[which(Man$Breed==3 & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

}

## Bulls < 6 months

final$CH4_Baby_bull<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$CH4_Baby_bull[i]<-Man$CH4[which(Man$Breed==final$breed[i] & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$CH4_Baby_bull[i]<-final$Andel_1[i]*Man$CH4[which(Man$Breed==1 & Man$Type=="Baby_bull" & Man$Stable ==7 )]+ 

      final$Andel_3[i]*Man$CH4[which(Man$Breed==3 & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

}

####---- N2O direct emissions from manure management ----####

final$N2O_direct_Cow<-0

final$N2O_direct_Bull<-0

final$N2O_direct_Studs<-0

final$N2O_direct_Heifiers<-0

N2O_direct_obs<-0

####---- Direct N2O emissions for Dairy cattle, bulls, studs and heifers ----####

for (i in 1:dim(final)[1]){

  

  if(final$breed[i]==1|final$breed[i]==3){

    

    for(k in Types){

      N2O_direct_obs<-0

      for(j in vektor){

        

        N2O_direct_obs<-final[,j][i]*Man$N2O_direct[which( Man$Stable == j & Man[,2]==k & Man$Breed==final$breed[i])]

        final[,paste("N2O_direct_",k,sep="")][i]<-final[,paste("N2O_direct_",k,sep="")][i]+N2O_direct_obs

        

      }}

  }

  

  if(final$breed[i]==4){

    

    for(k in Types){

      breed_1<-0

      breed_3<-0

      for(j in vektor){

        breed_1<-final[,j][i]*final$Andel_1[i] *Man$N2O_direct[which( Man$Stable == j & Man[,2]==k & Man$Breed==1)]

        breed_3<-final[,j][i]*final$Andel_3[i] *Man$N2O_direct[which( Man$Stable == j & Man[,2]==k & Man$Breed==3)]

        final[,paste("N2O_direct_",k,sep="")][i]<-final[,paste("N2O_direct_",k,sep="")][i]+breed_1+breed_3

      }

    }

  }}

## Heifers < 6 months

final$N2O_direct_Baby_heifer<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$N2O_direct_Baby_heifer[i]<-Man$N2O_direct[which(Man$Breed==final$breed[i] & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$N2O_direct_Baby_heifer[i]<-final$Andel_1[i]*Man$N2O_direct[which(Man$Breed==1 & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

    + final$Andel_3[i]*Man$N2O_direct[which(Man$Breed==3 &  Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

}

## Bulls < 6 months

final$N2O_direct_Baby_bull<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$N2O_direct_Baby_bull[i]<-Man$N2O_direct[which(Man$Breed==final$breed[i] & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$N2O_direct_Baby_bull[i]<-final$Andel_1[i]*Man$N2O_direct[which(Man$Breed==1 & Man$Type=="Baby_bull" & Man$Stable ==7 )]

    + final$Andel_3[i]*Man$N2O_direct[which(Man$Breed==3  & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

}

####---- N2O indirect emissions ----####

final$N2O_indirect_Cow<-0

final$N2O_indirect_Bull<-0

final$N2O_indirect_Studs<-0

final$N2O_indirect_Heifiers<-0

N2O_indirect_obs<-0

####---- Indirect N2O emissions for Dairy cattle, bulls, studs and heifers ----####

for (i in 1:dim(final)[1]){

  

  if(final$breed[i]==1|final$breed[i]==3){

    

    for(k in Types){

      N2O_indirect_obs<-0

      for(j in vektor){

        

        N2O_indirect_obs<-final[,j][i]*Man$N2O_indirect[which( Man$Stable == j & Man[,2]==k & Man$Breed==final$breed[i])]

        final[,paste("N2O_indirect_",k,sep="")][i]<-final[,paste("N2O_indirect_",k,sep="")][i]+N2O_indirect_obs

        



      }}

  }

  

  if(final$breed[i]==4){

    

    for(k in Types){

      breed_1<-0

      breed_3<-0

      for(j in vektor){

        breed_1<-final[,j][i]*final$Andel_1[i] *Man$N2O_indirect[which( Man$Stable == j & Man[,2]==k & Man$Breed==1)]

        breed_3<-final[,j][i]*final$Andel_3[i] *Man$N2O_indirect[which( Man$Stable == j & Man[,2]==k & Man$Breed==3)]

        final[,paste("N2O_indirect_",k,sep="")][i]<-final[,paste("N2O_indirect_",k,sep="")][i]+breed_1+breed_3

      }

    }

  }}

## Heifiers < 6 months

final$N2O_indirect_Baby_heifer<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$N2O_indirect_Baby_heifer[i]<-Man$N2O_indirect[which(Man$Breed==final$breed[i] & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$N2O_indirect_Baby_heifer[i]<-final$Andel_1[i]*Man$N2O_indirect[which(Man$Breed==1 & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

    + final$Andel_3[i]*Man$N2O_indirect[which(Man$Breed==3  & Man$Type=="Baby_heifer" & Man$Stable ==7 )]

  }

}

## Bulls < 6 months

final$N2O_indirect_Baby_bull<-0

for(i in 1:dim(final)[1]){

  if(final$breed[i]==1|final$breed[i]==3){

    final$N2O_indirect_Baby_bull[i]<-Man$N2O_indirect[which(Man$Breed==final$breed[i] & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

  if(final$breed[i]==4){

    final$N2O_indirect_Baby_bull[i]<-final$Andel_1[i]*Man$N2O_indirect[which(Man$Breed==1 & Man$Type=="Baby_bull" & Man$Stable ==7 )]+ 

      final$Andel_3[i]*Man$N2O_indirect[which(Man$Breed==3 & Man$Type=="Baby_bull" & Man$Stable ==7 )]

  }

}

####---- CH4 and N2O emissions aggregated on farm level ----####

####---- CH4 emissions ----####

## CH4 emissions from manure management - for each cattle type

final$CH4_Cow_farm<-final$CH4_Cow*as.numeric(final$X5110)

final$CH4_Bull_farm<-final$CH4_Bull*as.numeric(final$X5154)

final$CH4_Stud_farm<-final$CH4_Studs*as.numeric(final$X5152)

final$CH4_Heifers_farm<-final$CH4_Heifiers*as.numeric(final$Heifers)

final$CH4_Baby_Heifers_farm<-final$CH4_Baby_heifer*as.numeric(final$Baby_heifer)

final$CH4_Baby_Bull_farm<-final$CH4_Baby_bull*as.numeric(final$Baby_bull)  

## CH4 emissions from manure management in tons - across all cattle types

final$CH4_total<-

  (final$CH4_Cow_farm+

  final$CH4_Bull_farm+

  final$CH4_Stud_farm+

  final$CH4_Heifers_farm+

  final$CH4_Baby_Heifers_farm+

  final$CH4_Baby_Bull_farm)/1000

## CH4 emissions from manure management in tons CO2e - across all cattle types

final$CO2e_CH4<-final$CH4_total*25

## CH4 emissions from manure management in tons CO2e - only dairy cattle

final$GHG_Ch4_man_Only_Cows<-final$CH4_Cow_farm*25/1000

sum(final$GHG_Ch4_man_Only_Cows[which(final$year==2017)])

####---- N2O direct emissions ----####

## N2O_direct emissions from manure management - for each cattle type

final$N2O_direct_Cow_farm<-final$N2O_direct_Cow*as.numeric(final$X5110)

final$N2O_direct_Bull_farm<-final$N2O_direct_Bull*as.numeric(final$X5154)

final$N2O_direct_Stud_farm<-final$N2O_direct_Studs*as.numeric(final$X5152)

final$N2O_direct_Heifers_farm<-final$N2O_direct_Heifiers*as.numeric(final$Heifers)

final$N2O_direct_Baby_Heifers_farm<-final$N2O_direct_Baby_heifer*as.numeric(final$Baby_heifer)

final$N2O_direct_Baby_Bull_farm<-final$N2O_direct_Baby_bull*as.numeric(final$Baby_bull)  

## N2O direct emissions from manure management in tons - across all cattle types

final$N2O_direct_total<-

  (final$N2O_direct_Cow_farm+

     final$N2O_direct_Bull_farm+

     final$N2O_direct_Stud_farm+

     final$N2O_direct_Heifers_farm+

     final$N2O_direct_Baby_Heifers_farm+

     final$N2O_direct_Baby_Bull_farm)/1000

## N2O direct emissions from manure management in tons CO2e - across all cattle types

final$CO2e_N2O_direct<-final$N2O_direct_total*298

sum(final$CO2e_N2O_direct[which(final$year=="2017")])

## N2O direct emissions from manure management in tons CO2e - Only dairy cattle

final$N2O_direct_Cow_farm*298

#### N2O_indirect emissions ####

## N2O indirect emissions from manure management - for each cattle type

final$N2O_indirect_Cow_farm<-final$N2O_indirect_Cow*as.numeric(final$X5110)

final$N2O_indirect_Bull_farm<-final$N2O_indirect_Bull*as.numeric(final$X5154)

final$N2O_indirect_Stud_farm<-final$N2O_indirect_Studs*as.numeric(final$X5152)

final$N2O_indirect_Heifers_farm<-final$N2O_indirect_Heifiers*as.numeric(final$Heifers)

final$N2O_indirect_Baby_Heifers_farm<-final$N2O_indirect_Baby_heifer*as.numeric(final$Baby_heifer)

final$N2O_indirect_Baby_Bull_farm<-final$N2O_indirect_Baby_bull*as.numeric(final$Baby_bull)  

## N2O indirect emissions from manure management in tons - across all cattle types

final$N2O_indirect_total<-

  (final$N2O_indirect_Cow_farm+

     final$N2O_indirect_Bull_farm+

     final$N2O_indirect_Stud_farm+

     final$N2O_indirect_Heifers_farm+

     final$N2O_indirect_Baby_Heifers_farm+

     final$N2O_indirect_Baby_Bull_farm)/1000

## N2O indirect emissions from manure management in tons CO2e - across all cattle types

final$CO2e_N2O_indirect<-final$N2O_indirect_total*298

sum(final$CO2e_N2O_indirect[which(final$year=="2017")])

#### N2O total emissions: direct+indirect ####

final$N2O_total<-final$N2O_direct_total+final$N2O_indirect_total

final$C02e_N2O_total<-final$N2O_total*298

####---- Total CO2e in tons from manure management: CH4 + N2O ----####

final$GHG_man<-final$CO2e_CH4+final$C02e_N2O_total



#-------------------------------------------------------#

#####---- The GHG variable used for benchmarking ----####

#-------------------------------------------------------#

####---- Aggregating emissions from enteric fermentation and manure management ----####

final$GHG<-final$GHG_Ent+final$GHG_man

####---- validation of GHG emission estimates ----####

####---- Comparison of population and sample ----####

3730069 # Total emissions in CO2e from Enteric fermentation from the agricultural sector - National Inventory Report

0.87 # Cattle represent 87% of total GHG emissions from enteric fermentation - National Inventory Report

0.7 # Dairy cattle represent 70% of all emissions from enteric fermentation from cattle - National inventory Annex 13

571114.5  # Total number of dairy cattle in 2017 - Statistics Denmark (table "Kvæg 5")

# Total emissions from enteric fermentation in the population - only dairy cattle

3730069*0.87*0.7*0.51

#Entiric fermentation emissions - from the population of cattle

3730069*0.87/(72490*25*0.36+3730069*0.87+351000)

72490*25*0.36/(72490*25*0.36+3730069*0.87+351000)

351000/(72490*25*0.36+3730069*0.87+351000)

# Share of dairy cattle in  data sample vs. population 

Andel_cows<-sum(final$X5110[which(final$year==2017)])/571114.5

# What the total emissions from enteric fermentation should be for the sample

3730069*0.87*0.7*Andel_cows

# What the total emissions from enteric fermentation are for the sample

sum(final$GHG_Only_cows[which(final$year=="2017")])

sum(final$GHG_Only_cows[which(final$year=="2017")])/(3730069*0.87*0.7*Andel_cows)

### manure - sammenlign med populationen

72490*25 # Total CH4 emissions measured in CO2e for the agricultural sector - National Inventory Report

0.36 # The share which cattle contributes with - National Inventory Report

0.534 # The share of the total emissions from cattle which originate from adiry cattle - National Inventory Report

# Aggregated emissions of CH4 from manure management for the population of dairy cattle

72490*25*0.36*0.534

# What the sample should correspond to

72490*25*0.36*0.534*Andel_cows

72490*25*0.36*0.534/25

# Estmation from the sample

sum(final$GHG_Ch4_man_Only_Cows[which(final$year==2017)])

sum(final$GHG_Ch4_man_Only_Cows[which(final$year==2017)])/(72490*25*0.36*0.534*Andel_cows)

sum(final$GHG_Ch4_man_Only_Cows[which(final$year==2017)])/sum(final$CO2e_CH4[which(final$year==2017)])

# The total number of cattle in the sample

sum(final$X5110[which(final$year==2017)]

,final$Baby_bull[which(final$year==2017)]

,final$Baby_heifer[which(final$year==2017)]

,final$X5154[which(final$year==2017)]

,final$X5152[which(final$year==2017)]

,final$Heifers[which(final$year==2017)])

# The Danish population of cattle

1561147.25

# The sample share of the total population

andel_samlet_kvaeg<-sum(final$X5110[which(final$year==2017)]

    ,final$Baby_bull[which(final$year==2017)]

    ,final$Baby_heifer[which(final$year==2017)]

    ,final$X5154[which(final$year==2017)]

    ,final$X5152[which(final$year==2017)]

    ,final$Heifers[which(final$year==2017)])/1561147.25

72490*25*0.36*andel_samlet_kvaeg

### N2O Emissions in sample vs. population

# What the emissions should be for the sample

750000*Andel_cows

750*298*Andel_cows

# The aggregated estimated N2O emissions - in N2O 

sum(final$N2O_direct_Cow_farm[which(final$year==2017)])+sum(final$N2O_indirect_Cow_farm[which(final$year==2017)])

####---- Distribution of housing types in the data ----####

for (i in as.character(1:10)){

assign(paste("Housing_",i,sep=""),final[,i]*final$X5110)

}

Housing_all<-sum(sum(Housing_1)

,sum(Housing_2)

,sum(Housing_3)

,sum(Housing_4)

,sum(Housing_5)

,sum(Housing_6)

,sum(Housing_7)

,sum(Housing_8)

,sum(Housing_9)

,sum(Housing_10))

Stable_share<-c(

sum(Housing_1)/Housing_all

,sum(Housing_2)/Housing_all

,sum(Housing_3)/Housing_all

,sum(Housing_4)/Housing_all

,sum(Housing_5)/Housing_all

,sum(Housing_6)/Housing_all

,sum(Housing_7)/Housing_all

,sum(Housing_8)/Housing_all

,sum(Housing_9)/Housing_all

,sum(Housing_10)/Housing_all

)

# write.csv(Stable_share, file = "Stable_share.csv")

# Table for share of cattle in dataset vs. population

No_cattle_types<-c(

  sum(final$X5110[which(final$year==2017)])

  ,sum(final$Heifers[which(final$year==2017)])

  ,sum(final$Baby_heifer[which(final$year==2017)])

  ,sum(sum(final$X5154[which(final$year==2017)]),sum(final$X5152[which(final$year==2017)]))

  ,sum(final$Baby_bull[which(final$year==2017)]))

Table_cattle<-cbind(Cattle_5,No_cattle_types,No_cattle_types/Cattle_5[,2])        

names(Table_cattle)<-c("Type","Population","Our sample","Share of population")      

# write.csv(Table_cattle, file = "Table_cattle.csv")

####---- Plot for composition of GHG emissions for each farm in the dataset ----####

Matrix_for_barplot<-cbind(final$GHG



                          ,final$GHG-final$C02e_N2O_total

                          ,final$GHG-final$C02e_N2O_total-final$CO2e_CH4,final$year)

Matrix_for_barplot<-Matrix_for_barplot[order(final$GHG),]

par(mfrow=c(1,1))

par(family = "Times New Roman")

barplot(Matrix_for_barplot[which(Matrix_for_barplot[,4]==2017),1], border="#46626f",ylab="",cex.lab=1.4,family="Times New Roman",xlab="") 

mtext(text = expression(paste(CO[2],"e in ton")),

      side = 2, #side 2 = left

      line = 1.9,cex = 1.5,family="Times New Roman")

mtext(text = "Farms",

      side = 1, #side 2 = left

      line = 0.6,cex = 1.5,family="Times New Roman")

barplot(Matrix_for_barplot[which(Matrix_for_barplot[,4]==2017),2], border="#ddd3c8",add=TRUE,family="Times New Roman")

barplot(Matrix_for_barplot[which(Matrix_for_barplot[,4]==2017),3], border="#8b9086",add=TRUE,family="Times New Roman")

legend("topleft", c( 

                   expression(paste(N[2],"O - Manure Management")),expression(paste(CH[4]," - Manure management")),

                   expression(paste(CH[4]," - Enteric fermentation"))), col = c("#46626f", "#ddd3c8", "#8b9086"),

       text.col = "black", pch = 15,

       bg = "white",cex = 1.5,pt.cex=4,bty="n")

final$All_cattle<-final$X5110 +final$Baby_bull+final$Baby_heifer+final$X5154+final$X5152+final$Heifers

####---- plot for correlation between total number of cattle on a farm and total GHG emissions ----####

par(mfrow=c(1,1))       

plot(final$All_cattle[which(final$year==2017)],final$GHG[which(final$year==2017)],

     xlab="Total number of cattle", ylab="Total GHG emissions",col="#8b9086",pch=16,frame.plot = FALSE

     ,xlim=c(0,max(final$All_cattle[which(final$year==2017)])+100),ylim=c(0,max(final$GHG[which(final$year==2017)])+100),

     cex.lab=1.5,cex.axis=1.5)



#============================================#

####---- Part B: Benchmarking analysis ----####

#============================================#

####---- Clearing environment ----####

rm(list=ls())

####---- Installing packages ----####

library(lpSolveAPI)

library(readxl)

library(plotly)

library(Benchmarking)

library(lmtest)

library(car)

library(AER) 

library(mfx)

library(nlme)

library(stargazer)

####---- defining function for geometrical mean ----####

geo <- function(x) {prod(x)^(1/length(x))}

####---- Customizing fonts ----####

# library(extrafont)

# windowsFonts()

library(extrafont)

# font_import()

# y

# loadfonts(device = "win")

####---- Loading data ----####

final_dea <- read_excel("Data")

# Defining new variables 

final_dea$All_cattle<-final_dea$X5110+final_dea$Baby_bull+final_dea$Baby_heifer+final_dea$X5154+final_dea$X5152+final_dea$Heifers

final_dea$Year_org<-0

final_dea$Year_org[which(final_dea$type==1)]<-2020-final_dea$X6408[which(final_dea$type==1)]

final_dea$deep_litter_share<-(final_dea$`7`+final_dea$`8`+final_dea$`9`+final_dea$`10`)

final_dea$counseling_total<-final_dea$X7825+final_dea$X7826+final_dea$X7841

final_dea$X6404<-as.numeric(final_dea$X6404)

final_dea$X6404[which(final_dea$X6404==0)]<-0

final_dea$X6404[which(final_dea$X6404==1)]<-0

final_dea$X6404[which(final_dea$X6404==2)]<-1

final_dea$X6404[which(final_dea$X6404==3)]<-1

final_dea$X6404[which(final_dea$X6404==4)]<-1

final_dea$X6404[which(final_dea$X6404==5)]<-1

####---- Subsetting for the year 2017 ----####

Data_2017<-final_dea[which(final_dea$year==2017),]

####---- Removing outliers ----####

Data_2017<-Data_2017[-which(Data_2017$SysNr==44085),] 

# The outlier found from the outlier detection is not removed when running the section for outlier detection in ths script 

Data_2017<-data.frame(Data_2017)

#------------------------------------------------------------------------------------------#

####---- Defining the shortage function - modified source code from the DJL package ----####

#------------------------------------------------------------------------------------------#

dm.sf.new <-function(xdata, ydata, rts = "crs", g = NULL,

                     wd = NULL, se = FALSE, sg = "ssm", date = NULL, cv = "convex", o = NULL){

  

  # Initial checks

  if(is.na(match(rts, c("crs", "vrs", "irs", "drs")))) stop('rts must be "crs", "vrs", "irs", or "drs".')

  if(is.na(match(se,  c(0, 1, FALSE, TRUE))))          stop('se must be either 0(FALSE) or 1(TRUE).')

  if(is.na(match(sg,  c("ssm", "max", "min"))))        stop('sg must be "ssm", "max", or "min".')

  if(is.na(match(cv,  c("convex", "fdh"))))            stop('cv must be "convex" or "fdh".')

  if(!is.null(o) && !all(o <= nrow(xdata)))            stop('o must be element(s) of n.')

  

  # Load library

  # library(lpSolveAPI)

  

  # Parameters

  xdata <- as.matrix(xdata)

  ydata <- as.matrix(ydata)

  g     <- if(is.null(g)) cbind(xdata, ydata) else as.matrix(g)

  date  <- if(!is.null(date)) as.matrix(date)

  n     <- nrow(xdata)

  m     <- ncol(xdata)

  s     <- ncol(ydata)

  wd    <- if(is.null(wd)) matrix(c(0), ncol = s) else as.matrix(wd)

  se    <- ifelse(is.logical(se), ifelse(isTRUE(se), 1, 0), se)

  rts   <- ifelse(cv == "fdh", "vrs", rts)

  o     <- if(is.null(o)) c(1:n) else as.vector(o)

  

  # Data frames

  results.efficiency <- matrix(NA, nrow = n, ncol = 1)

  results.lambda     <- matrix(NA, nrow = n, ncol = n)

  results.mu         <- matrix(NA, nrow = n, ncol = n)

  results.xslack     <- matrix(NA, nrow = n, ncol = m) 

  results.yslack     <- matrix(NA, nrow = n, ncol = s) 

  results.w          <- matrix(NA, nrow = n, ncol = m)

  results.p          <- matrix(NA, nrow = n, ncol = s)

  results.u          <- matrix(NA, nrow = n, ncol = 1)

  

  # LP

  for (k in o){   

    # Declare LP

    lp.sf <- make.lp(0, n + n + 1 + m + s) # lambda+mu+efficiency+xslack+yslack

    

    # Set objective

    set.objfn(lp.sf, c(-1), indices = c(n + n + 1))

    

    # RTS

    if(rts == "vrs") add.constraint(lp.sf, c(rep(1, n*2)), indices = c(1:(n*2)), "=", 1)

    if(rts == "crs") set.constr.type(lp.sf, 0, 1)

    if(rts == "irs") add.constraint(lp.sf, c(rep(1, n*2)), indices = c(1:(n*2)), ">=", 1)

    if(rts == "drs") add.constraint(lp.sf, c(rep(1, n*2)), indices = c(1:(n*2)), "<=", 1)

    

    # Set type

    if(cv == "fdh") set.type(lp.sf, 1:n, "binary")

    

    # Mu

    if(rts == "crs" || rts == "drs" || sum(wd) == 0) add.constraint(lp.sf, c(rep(1, n)),

                                                                    indices = c((n + 1):(n + n)), "=", 0)

    

    # Input constraints

    for(i in 1:m) add.constraint(lp.sf, c(xdata[, i], xdata[, i], g[k, i], 1),

                                 indices = c(1:n, (n + 1):(n + n), n + n + 1, n + n + 1 + i), "=", xdata[k, i])

    

    # Output constraints

    for(r in 1:s){

      if(wd[1, r] == 1){

        add.constraint(lp.sf, c(ydata[, r], g[k, m + r]),



                       indices = c(1:n, n + n + 1), "=", ydata[k, r])

        add.constraint(lp.sf, c(1), indices = c(n + n + 1 + m + r), "=", 0)

      }else{

        add.constraint(lp.sf, c(ydata[, r], -g[k, m + r], -1), 

                       indices = c(1:n, n + n + 1, n + n + 1 + m + r), "=", ydata[k, r])

      }

    }

    

    # PPS for Super

    if(se == 1) add.constraint(lp.sf, c(1, 1), indices = c(k, n + k), "=", 0)

    

    # Bounds

    set.bounds(lp.sf, lower = c(rep(0, n + n), -Inf, rep(0, m + s)))  

    

    # Solve

    solve.lpExtPtr(lp.sf)

    

    # Get results

    results.efficiency[k] <- -1 * get.objective(lp.sf)

    temp.p                <- get.variables(lp.sf)

    results.lambda[k,]    <- temp.p[1:n]

    results.mu[k,]        <- temp.p[(n + 1):(n + n)]

    results.xslack[k,]    <- temp.p[(n + n + 2):(n + n + 1 + m)]

    results.yslack[k,]    <- temp.p[(n + n + 1 + m + 1):(n + n + 1 + m + s)]

    temp.d                <- -1 * get.dual.solution(lp.sf)

    results.u[k,]         <- temp.d[2] 

    results.w[k,]         <- temp.d[4:(3 + m)]

    results.p[k,]         <- temp.d[(3 + m + 1):(3 + m + s)]

    

  }

  results <- list(eff = results.efficiency, lambda = results.lambda, mu = results.mu,

                  xslack = results.xslack, yslack = results.yslack, w = results.w, p = results.p, u = results.u)

  return(results)

}

####---- Creating variables for benchmarking ----####

## Input

Data_2017$X<-Data_2017$feed + Data_2017$labour_tot + Data_2017$ovc + Data_2017$fix +  Data_2017$cap

X<-Data_2017$X

# Subsetting for conventional and organic

X_con<-Data_2017$X[which(Data_2017$type==0)]

X_org<-Data_2017$X[which(Data_2017$type==1)]

## Outputs

y_REV<-Data_2017$milk + Data_2017$oo

y_GHG<-Data_2017$GHG

Data_2017$Y<-cbind(y_REV,y_GHG)

Y<-Data_2017$Y

# For conventional and organic farms

Y_con<-Data_2017$Y[which(Data_2017$type==0),]

Y_org<-Data_2017$Y[which(Data_2017$type==1),]

####---- Defining RTS ----#### 

rts = "crs"

####---- Defining direction ----####

# The specific direction is chosen given the specific model under analysis

g <- cbind(0.000000000000000000000000000000000000000001,Y[,1], Y[,2]) # output oriented

# g <- cbind(0.000000000000000000000000000000000000000001,0.000000000000000000000000000000000000000001, Y[,2]) # Only reducing GHG

# g <- cbind(0.000000000000000000000000000000000000000001, Y[,1],0.000000000000000000000000000000000000000001) # Only increasing revenue

# Subsetting for conventional and organic 

g_con<-g[which(Data_2017$type==0),]

g_org<-g[which(Data_2017$type==1),]

# Defining the weak disposable output

wd <- matrix(c(0, 1), ncol = 2)

#----------------------------#

####---- Benchmarking ----####

#----------------------------#

# sf_solved<-dm.sf.new(xdata = X,ydata = Y,rts="crs",g=g,wd=wd) 

sf_solved_con<-dm.sf.new(xdata = X_con,ydata = Y_con,rts="crs",g=g_con,wd=wd)

sf_solved_org<-dm.sf.new(xdata = X_org,ydata = Y_org,rts="crs",g=g_org,wd=wd)

####---- Inefficiency scores ----####

# Conventional inefficiency scores

beta_con<-sf_solved_con$eff

# Organic inefficiency scores

beta_org<-sf_solved_org$eff 

####---- Efficiency scores ----####

# Conventional 

eff_con<-1/(1+sf_solved_con$eff)

geo(eff_con)

mean(eff_con)

summary(eff_con)

# Organic 

eff_org<-1/(1+sf_solved_org$eff)

geo(eff_org)

mean(eff_org)

summary(eff_org)

####---- Frontier shadow prices ----####

#### Frontier shadow prices conventional ####

Shadow_con<-round(sf_solved_con$p[,2]/sf_solved_con$p[,1],4)

Shadow_con

####---- Unique shadow prices ----####

Unique_shadow_con<-cbind(Shadow_price_con=unique(Shadow_con), Number_shadow_con=0)

for(i in unique(round(Shadow_con,4))){

  if(i==unique(round(Shadow_con,4))[1]){

    number=1}

  Unique_shadow_con[number,2]<-length(which(Shadow_con==i))

  

  number=number+1

}

Unique_shadow_con<-Unique_shadow_con[order(Unique_shadow_con[,1]),]   

# Table for unique shadow prices of conventional farms

Unique_shadow_con 

write.csv(Unique_shadow_con,file = "Unique_shadow_con_REV.csv") 

#### Frontier shadow prices organic ####

Shadow_org<-round(sf_solved_org$p[,2]/sf_solved_org$p[,1],4)

Shadow_org



####---- Unique shadow prices ----####

Unique_shadow_org<-cbind(Shadow_price_org=unique(Shadow_org), Number_shadow_org=0)

for(i in unique(round(Shadow_org,4))){

  if(i==unique(round(Shadow_org,4))[1]){

    number=1}

  Unique_shadow_org[number,2]<-length(which(Shadow_org==i))

  

  number=number+1

}

Unique_shadow_org<-Unique_shadow_org[order(Unique_shadow_org[,1]),]   

# Table for frontier shadow prices of organic farms

Unique_shadow_org 

write.csv(Unique_shadow_org,file = "Unique_shadow_org_REV.csv")

####---- Peers ----####

####---- Peers for organic farms ----####

Peers_org<-which(!colSums(sf_solved_org$lambda)==0)

Peers_table_org<-cbind(Peers_org,number_peers=0)

lambda_org_table<-sf_solved_org$lambda[-Peers_org,]

for( i in Peers_org){

  if(i==Peers_org[1]){

    number=1}

  lambda_org_table<-sf_solved_org$lambda[-Peers_org[-number],]

  Peers_table_org[number,2]<-  length(which(lambda_org_table[,i]>0))

  number<-number+1

}

Peers_table_org

####---- Peers for conventional farms ----####

Peers_con<-which(!colSums(sf_solved_con$lambda)==0)

Peers_table_con<-cbind(Peers_con,number_peers=0)

lambda_con_table<-sf_solved_con$lambda[-Peers_con,]

for( i in Peers_con){

  if(i==Peers_con[1]){

    number=1}

  lambda_con_table<-sf_solved_con$lambda[-Peers_con[-number],]

  Peers_table_con[number,2]<-  length(which(  lambda_con_table[,i]>0))

  number<-number+1

}

Peers_table_con

####---- Plot of organic vs. conventional farms ----####

par(mfrow=c(1,2))

rbPal_type <- colorRampPalette(c("#ddd3c8","#aeb6ab"))

Data_2017$Col_type <- rbPal_type(10)[as.numeric(cut(Data_2017$type,breaks = 10))]

par(mfrow=c(1,1))

plot(Y[,2]/X, Y[,1]/X,col=Data_2017$Col_type,pch=16,ylab="Revenue/Costs",xlab="GHG emissions/Costs",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.1,max(Y[,1]/X)+0.1),cex=2)

text(c(0.000122,0.000132),c(1.6,1.5),c("Organic farms","Conventional farms"),col=c("#aeb6ab","#ddd3c8"),cex=1.5,family="Times New Roman")

#--------------------------------------------------------------------#

####----------------------- Outlier detection --------------------####

#--------------------------------------------------------------------#

####---- Outlier detection for organic farms ----####

Frontier_org<-which(sf_solved_org$eff==0)

Outlier_detection_org<-cbind(Frontier_org,0,0,0,0,0,Peers_table_org[,2])

colnames(Outlier_detection_org)<-c("Farm","mean eff","Diff to normal mean eff","Shadow mean","mean diff of sp","mean diff of sp/original mean","Time used as peer")

for(i in Frontier_org){

  

  X_org_outlier<-X_org[-i]

  Y_org_outlier<-Y_org[-i,]

  g_org_outlier<-g_org[-i,]

  

  sf_solved_org_outlier<-dm.sf.new(xdata = X_org_outlier,ydata = Y_org_outlier,rts="crs",g=g_org_outlier,wd=wd)

  

  Outlier_detection_org[which(Outlier_detection_org[,1]==i),2]<-mean(sf_solved_org_outlier$eff)

  Outlier_detection_org[which(Outlier_detection_org[,1]==i),3]<-mean(sf_solved_org$eff[-i])-mean(sf_solved_org_outlier$eff)

  Outlier_detection_org[which(Outlier_detection_org[,1]==i),4]<-mean(round(sf_solved_org_outlier$p[,2]/sf_solved_org_outlier$p[,1],4))

  Outlier_detection_org[which(Outlier_detection_org[,1]==i),5]<-mean(round(sf_solved_org_outlier$p[,2]/sf_solved_org_outlier$p[,1],4))-mean(Shadow_org[-i])

  Outlier_detection_org[which(Outlier_detection_org[,1]==i),6]<-(mean(round(sf_solved_org_outlier$p[,2]/sf_solved_org_outlier$p[,1],4))-mean(Shadow_org[-i]))/mean(Shadow_org[-

i])

  

}

Outlier_detection_org<-cbind(Sys=Data_2017$SysNr[which(Data_2017$type==0)][Frontier_org],Outlier_detection_org)

Outlier_detection_org

####---- Outlier detection for conventional farms ----#####

Frontier_con<-which(sf_solved_con$eff==0)

Outlier_detection_con<-cbind(Frontier_con,0,0,0,0,0,Peers_table_con[,2])

colnames(Outlier_detection_con)<-c("Farm","mean eff","Diff to normal mean eff","Shadow mean","mean diff of sp","mean diff of sp/original mean","Time used as peer")

for(i in Frontier_con){

  

  X_con_outlier<-X_con[-i]

  Y_con_outlier<-Y_con[-i,]

  g_con_outlier<-g_con[-i,]

  

  sf_solved_con_outlier<-dm.sf.new(xdata = X_con_outlier,ydata = Y_con_outlier,rts="crs",g=g_con_outlier,wd=wd)

  

  Outlier_detection_con[which(Outlier_detection_con[,1]==i),2]<-mean(sf_solved_con_outlier$eff)

  Outlier_detection_con[which(Outlier_detection_con[,1]==i),3]<-mean(sf_solved_con$eff[-i])-mean(sf_solved_con_outlier$eff)

  Outlier_detection_con[which(Outlier_detection_con[,1]==i),4]<-mean(round(sf_solved_con_outlier$p[,2]/sf_solved_con_outlier$p[,1],4))

  Outlier_detection_con[which(Outlier_detection_con[,1]==i),5]<-mean(round(sf_solved_con_outlier$p[,2]/sf_solved_con_outlier$p[,1],4))-mean(Shadow_con[-i])

  Outlier_detection_con[which(Outlier_detection_con[,1]==i),6]<-(mean(round(sf_solved_con_outlier$p[,2]/sf_solved_con_outlier$p[,1],4))-mean(Shadow_con[-i]))/mean(Shadow_con[-

i])

  

}

Outlier_detection_con<-cbind(Sys=Data_2017$SysNr[which(Data_2017$type==0)][Frontier_con],Outlier_detection_con)

Outlier_detection_con

####---- Plot with and without outlier ----####

####---- organic ----####

Outlier<-NULL # No outliers are detected in the organic model

####---- organic model without outlier ----####

X_org_outlier<-X_org#[-Outlier]

Y_org_outlier<-Y_org#[-Outlier,]

g_org_outlier<-g_org#[-Outlier,]

sf_solved_org_outlier<-dm.sf.new(xdata = X_org_outlier,ydata = Y_org_outlier,rts="crs",g=g_org_outlier,wd=wd)



eff_org_outlier<-1/(1+sf_solved_org_outlier$eff)

par(mfrow=c(1,1))

plot(Y[which(Data_2017$type==1),2]/X[which(Data_2017$type==1)], Y[which(Data_2017$type==1),1]/X[which(Data_2017$type==1)],

     col="#8b9086" ,pch=16,ylab="Revenue/Costs",xlab="GHG emissions/Costs",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="Model only including organic farms")

# Plotting the frontier including potential outlier

x=Y_org[which(sf_solved_org$eff==0),2]/X_org[which(sf_solved_org$eff==0)]

y=Y_org[which(sf_solved_org$eff==0),1]/X_org[which(sf_solved_org$eff==0)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#8b9086",lwd=2,lty=1)

text(x-0.000005,y+0.04,c(1,4,3,5,6,2), family="Times New Roman")

# Plotting the frontier excluding potential outlier

x=Y_org_outlier[which(sf_solved_org_outlier$eff==0),2]/X_org_outlier[which(sf_solved_org_outlier$eff==0)]

y=Y_org_outlier[which(sf_solved_org_outlier$eff==0),1]/X_org_outlier[which(sf_solved_org_outlier$eff==0)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#8b9086",lwd=2)

####---- conventional ----####

Outlier<-721

####---- conventional model without outlier ----####

X_con_outlier<-X_con[-Outlier]

Y_con_outlier<-Y_con[-Outlier,]

g_con_outlier<-g_con[-Outlier,]

sf_solved_con_outlier<-dm.sf.new(xdata = X_con_outlier,ydata = Y_con_outlier,rts="crs",g=g_con_outlier,wd=wd)

eff_con_outlier<-1/(1+sf_solved_con_outlier$eff)

plot(Y[which(Data_2017$type==0),2]/X[which(Data_2017$type==0)], Y[which(Data_2017$type==0),1]/X[which(Data_2017$type==0)],

     col="#ddd3c8" ,pch=16,ylab="Revenue/Costs",xlab="GHG emissions/Costs",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="Model only including conventional farms")

# Plotting the frontier including the outlier

x=Y_con[which(sf_solved_con$eff==0),2]/X_con[which(sf_solved_con$eff==0)]

y=Y_con[which(sf_solved_con$eff==0),1]/X_con[which(sf_solved_con$eff==0)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#ddd3c8",lwd=2,lty=3)

text(x-0.000005,y+0.04,rank(-Outlier_detection_con[,7]),family="Times New Roman")

# Plotting the frontier excluding the outlier

x=Y_con_outlier[which(sf_solved_con_outlier$eff==0),2]/X_con_outlier[which(sf_solved_con_outlier$eff==0)]

y=Y_con_outlier[which(sf_solved_con_outlier$eff==0),1]/X_con_outlier[which(sf_solved_con_outlier$eff==0)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#ddd3c8",lwd=2)

#-------------------------------------------------------------------#

####-------------- Results after outlier detection --------------####

#-------------------------------------------------------------------#

####---- Histograms of inefficiency scores  ----####

# DMUs with negative frontier shadow prices are excluded

par(mfrow=c(1,2))

# Histogram for conventional farms

hist(sf_solved_con$eff[which(Shadow_con<0)],xlab=expression(paste("Inefficiency (",beta,")")),ylab="",breaks = 40,family="Times New 

Roman",col="#ddd3c8",border="white",cex.lab=2,cex.axis=1.7,cex.main=2,main="conventional inefficiency scores",ylim=c(0,100))

abline(v = mean(sf_solved_con$eff[which(Shadow_con<0)]), col="black", lwd=2, lty=1)

# Histogram for organic farms

hist(sf_solved_org$eff[which(Shadow_org<0)],xlab=expression(paste("Inefficiency (",beta,")")),ylab="",breaks = 40,family="Times New 

Roman",col="#8b9086",border="white",cex.lab=2,cex.axis=1.7,cex.main=2,main="organic inefficiency scores",ylim=c(0,25))

abline(v = mean(sf_solved_con$eff[which(Shadow_con<0)]), col="black", lwd=2, lty=1)

####---- Plotting inefficiency for organic farms ----####

# Colour palette for 2d scatterplot

rbPal_org <- colorRampPalette(c("#ddd3c8","#a4864b","#46626f"))

col_org <- rbPal_org(10)[as.numeric(cut(eff_org,breaks = 10))]

# Plotting the model

plot(Y[which(Data_2017$type==1),2]/X[which(Data_2017$type==1)], Y[which(Data_2017$type==1),1]/X[which(Data_2017$type==1)],

     col=col_org ,pch=16,ylab="Revenue/Costs",xlab="GHG emissions/Costs",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="Model only including organic farms")

# Colouring the entire frontier

x=Y[which(Data_2017$type==1),2]/X[which(Data_2017$type==1)]

y=Y[which(Data_2017$type==1),1]/X[which(Data_2017$type==1)]

x<-x[which(eff_org==1)]

y<-y[which(eff_org==1)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#46626f",lwd=2)

# Colouring the Inefficient part of the frontier

y<-y[order(x)][c(5,6)]

x<-x[order(x)][c(5,6)]

lines(c(x[order(x)],max(x[order(x)])), c(y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="white",lwd=2,lty=3)

####---- Plotting inefficiency for conventional farms ----####

# Colour palette for 2d scatterplot

rbPal_conv <- colorRampPalette(c("#ddd3c8","#a4864b","#46626f"))

col_conv <- rbPal_conv(10)[as.numeric(cut(eff_con,breaks = 10))]

# Plotting the model

plot(Y[which(Data_2017$type==0),2]/X[which(Data_2017$type==0)], Y[which(Data_2017$type==0),1]/X[which(Data_2017$type==0)],

     col=col_conv ,pch=16,ylab="Revenue/Costs",xlab="GHG emissions/Costs",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="Model only including conventional farms")

# Plotting the entire frontier

x=Y[which(Data_2017$type==0),2]/X[which(Data_2017$type==0)]

y=Y[which(Data_2017$type==0),1]/X[which(Data_2017$type==0)]

x<-x[which(eff_con==1)]

y<-y[which(eff_con==1)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="#46626f",lwd=2)

# Colouring the inefficient part of the frontier

y<-y[order(x)][c(6,7)]

x<-x[order(x)][c(6,7)]

lines(c(x[order(x)],max(x[order(x)])), c(y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="white",lwd=2,lty=3)

####---- Plotting frontier shadow prices for conventional farms ----####

# Colour palette

palette(c("#46626f","#aeb6ab","#ddd3c8","#8b9086","#a4864b","#8E8580","#a9bebf","#f5f1e9"))

par(mfrow=c(1,1))

plot(Y[which(Data_2017$type==0),2]/X[which(Data_2017$type==0)], Y[which(Data_2017$type==0),1]/X[which(Data_2017$type==0)],

     col=as.factor(Shadow_con) ,pch=16,ylab="",xlab="",family="Times New Roman",cex.lab=3,cex.axis=2.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="conventional",cex.main=2.5)

mtext(text = "GHG/Costs",

      side = 1, #side 2 = left

      line = 3.5,cex = 2,family="Times New Roman")



# Plotting the entire frontier

x=Y[which(Data_2017$type==0),2]/X[which(Data_2017$type==0)]

y=Y[which(Data_2017$type==0),1]/X[which(Data_2017$type==0)]

x<-x[which(eff_con==1)]

y<-y[which(eff_con==1)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="black",lwd=2)

# Colouring the inefficient part of the frontier

y<-y[order(x)][c(6,7)]

x<-x[order(x)][c(6,7)]

lines(c(x[order(x)],max(x[order(x)])), c(y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="white",lwd=2,lty=3)

####---- Plotting frontier shadow prices for organic farms ----####

# Colour palette  

palette(c("#46626f","#aeb6ab","#ddd3c8","#8b9086","#a4864b","#8E8580","#a9bebf","#f5f1e9"))

plot(Y[which(Data_2017$type==1),2]/X[which(Data_2017$type==1)], Y[which(Data_2017$type==1),1]/X[which(Data_2017$type==1)],

     col=as.factor(Shadow_org) ,pch=16,ylab="",xlab="",family="Times New Roman",cex.lab=3,cex.axis=2.5,frame = 

FALSE,xlim=c(min(Y[,2]/X)-0.00001,max(Y[,2]/X)+0.00001),ylim=c(min(Y[,1]/X)-0.2,max(Y[,1]/X)+0.1),cex=2, main="Organic",cex.main=2.5)

mtext(text = "GHG/Costs",

      side = 1, #side 2 = left

      line = 3.5,cex = 2,family="Times New Roman")

# Plotting the entire frontier

x=Y[which(Data_2017$type==1),2]/X[which(Data_2017$type==1)]

y=Y[which(Data_2017$type==1),1]/X[which(Data_2017$type==1)]

x<-x[which(eff_org==1)]

y<-y[which(eff_org==1)]

lines(c(0,x[order(x)],max(x[order(x)])), c(0,y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="black",lwd=2)

# Colouring the inefficient part of the frontier

y<-y[order(x)][c(5,6)]

x<-x[order(x)][c(5,6)]

lines(c(x[order(x)],max(x[order(x)])), c(y[order(x)],0), xlim=range(x), ylim=range(y), pch=16,col="white",lwd=2,lty=3)

#--------------------------------------------------------------------------------#

####-------------- Second stage analysis of inefficiency scores --------------####

#--------------------------------------------------------------------------------#

#----------------------------#

####---- Tobit models ----####

#----------------------------#

####---- Conventional tobit ----####

t=0 # Type defined for conventional farms

Data_con_2017<-Data_2017[which(Data_2017$type==t),]

Data_con_2017$beta_con<-beta_con

Data_con_2017$Shadow_con<-Shadow_con

Data_con_2017<-Data_con_2017[which(Data_con_2017$Shadow_con<0),]

tobit_con<-tobit(Data_con_2017$beta_con~Data_con_2017$All_cattle[which(Data_con_2017$type==t)]

                 + I(Data_con_2017$milk[which(Data_con_2017$type==t)]/(Data_con_2017$milk[which(Data_con_2017$type==t)]+Data_con_2017$oo[which(Data_con_2017$type==t)])*100)

                 + I((Data_con_2017$fix[which(Data_con_2017$type==t)]/Data_con_2017$input[which(Data_con_2017$type==t)])*100)

                 + I((Data_con_2017$X5110[which(Data_con_2017$type==t)]/Data_con_2017$All_cattle[which(Data_con_2017$type==t)]*100))

                 + as.factor(Data_con_2017$X6404[which(Data_con_2017$type==t)])

                 + I(Data_con_2017$X7825[which(Data_con_2017$type==t)]/1000)

                 + I(Data_con_2017$X7826[which(Data_con_2017$type==t)]/1000)

                 + I(Data_con_2017$X7841[which(Data_con_2017$type==t)]/1000)

                 + I(Data_con_2017$Andel_3[which(Data_con_2017$type==t)]*100)

                 + I(Data_con_2017$deep_litter_share[which(Data_con_2017$type==t)]*100)

                 + I(Data_con_2017$Milk_kv[which(Data_con_2017$type==t)] / Data_con_2017$X5110[which(Data_con_2017$type==t)]*100)

                 ,left=0,right=1)

summary(tobit_con)

logLik(tobit_con)

sigma_con=tobit_con$scale

yhat_con=fitted(tobit_con)

Squarred_cor_con <- cor(yhat_con,Data_con_2017$beta_con)^2

Squarred_cor_con

####---- organic second stage ----####

t=1 # Type defined for conventional farms

Data_org_2017<-Data_2017[which(Data_2017$type==t),]

Data_org_2017$beta_org<-beta_org

Data_org_2017$Shadow_org<-Shadow_org

Data_org_2017<-Data_org_2017[which(Data_org_2017$Shadow_org<0),]

tobit_org<-tobit(Data_org_2017$beta_org~Data_org_2017$All_cattle[which(Data_org_2017$type==t)]

                 + I(Data_org_2017$milk[which(Data_org_2017$type==t)]/(Data_org_2017$milk[which(Data_org_2017$type==t)]+Data_org_2017$oo[which(Data_org_2017$type==t)])*100)

                 + I((Data_org_2017$fix[which(Data_org_2017$type==t)]/Data_org_2017$input[which(Data_org_2017$type==t)])*100)

                 + I((Data_org_2017$X5110[which(Data_org_2017$type==t)]/Data_org_2017$All_cattle[which(Data_org_2017$type==t)]*100))

                 + as.factor(Data_org_2017$X6404[which(Data_org_2017$type==t)])

                 + I(Data_org_2017$X7825[which(Data_org_2017$type==t)]/1000)

                 + I(Data_org_2017$X7826[which(Data_org_2017$type==t)]/1000)

                 + I(Data_org_2017$X7841[which(Data_org_2017$type==t)]/1000)

                 + I(Data_org_2017$Andel_3[which(Data_org_2017$type==t)]*100)

                 + I(Data_org_2017$deep_litter_share[which(Data_org_2017$type==t)]*100)  

                 + I(Data_org_2017$Milk_kv[which(Data_org_2017$type==t)] / Data_org_2017$X5110[which(Data_org_2017$type==t)]*100)

                 + Data_org_2017$Year_org[which(Data_org_2017$type==t)] 

                 ,left=0,right=1)

summary(tobit_org)

sigma_org=tobit_org$scale

yhat_org=fitted(tobit_org)

Squarred_cor_org <- cor(yhat_org,Data_org_2017$beta_org)^2

Squarred_cor_org 

#---------------------------------------------#

####---- Average partial effects (APE) ----####

#---------------------------------------------#

#---- APE for conventional----#

# APE for Continous variables

t=0 # Defining conventional farms (type=0)

tobit_data<-cbind(

  Data_con_2017$All_cattle[which(Data_con_2017$type==t)]

  , I(Data_con_2017$milk[which(Data_con_2017$type==t)]/(Data_con_2017$milk[which(Data_con_2017$type==t)]+Data_con_2017$oo[which(Data_con_2017$type==t)]*100))

  , I((Data_con_2017$fix[which(Data_con_2017$type==t)]/Data_con_2017$input[which(Data_con_2017$type==t)])*100)

  , I((Data_con_2017$X5110[which(Data_con_2017$type==t)]/Data_con_2017$All_cattle[which(Data_con_2017$type==t)]*100))

  , as.factor(Data_con_2017$X6404[which(Data_con_2017$type==t)])

  , I(Data_con_2017$X7825[which(Data_con_2017$type==t)]/1000)

  , I(Data_con_2017$X7826[which(Data_con_2017$type==t)]/1000)

  , I(Data_con_2017$X7841[which(Data_con_2017$type==t)]/1000)

  , I(Data_con_2017$Andel_3[which(Data_con_2017$type==t)]*100)

  , I(Data_con_2017$deep_litter_share[which(Data_con_2017$type==t)]*100)



  , I(Data_con_2017$Milk_kv[which(Data_con_2017$type==t)] / Data_con_2017$X5110[which(Data_con_2017$type==t)]*100))

APE_tobit<-matrix(0,nrow=1,ncol=dim(tobit_data)[2])

for (i in 1:dim(tobit_data)[2]){

  

  b_xj<- coef(tobit_con)[i+1]

  xb=predict(tobit_con)

  sigma=tobit_con$scale

  invmills <- dnorm(xb/sigma)/pnorm(xb/sigma)

  PE_Ey_ygt0_xj <- b_xj*(1-invmills*(xb/sigma+invmills))

  APE_tobit[1,i]<-mean(PE_Ey_ygt0_xj)

  

}

# APE for Discrete variables

t=0 

xb_c = predict(tobit_con)- tobit_con$coef[6]*(Data_con_2017$X6404[which(Data_con_2017$type==t)])+ tobit_con$coef[6]*(0)

xb_c1 = predict(tobit_con)- tobit_con$coef[6]*(Data_con_2017$X6404[which(Data_con_2017$type==t)])+ tobit_con$coef[6]*(1)

sigma=tobit_con$scale

Eyy_c1<- pnorm(xb_c1/sigma)*xb_c1+sigma*dnorm(xb_c1/sigma)

Eyy_c<- pnorm(xb_c/sigma)*xb_c+sigma*dnorm(xb_c/sigma)

PE <- Eyy_c1-Eyy_c

APE_disc<- mean(PE)

APE_tobit[1,5]<-APE_disc

APE_tobit_con<-APE_tobit

#---- APE for corganic----#

# APE for continous variables

t=1 # Defining organic farms (type=1)

tobit_data<-cbind(Data_org_2017$All_cattle[which(Data_org_2017$type==t)]

                  , I(Data_org_2017$milk[which(Data_org_2017$type==t)]/((Data_org_2017$milk[which(Data_org_2017$type==t)]+Data_org_2017$oo[which(Data_org_2017$type==t)])*100))

                  , I((Data_org_2017$fix[which(Data_org_2017$type==t)]/Data_org_2017$input[which(Data_org_2017$type==t)])*100)

                  , I((Data_org_2017$X5110[which(Data_org_2017$type==t)]/Data_org_2017$All_cattle[which(Data_org_2017$type==t)]*100))

                  , as.factor(Data_org_2017$X6404[which(Data_org_2017$type==t)])

                  , I(Data_org_2017$X7825[which(Data_org_2017$type==t)]/1000)

                  , I(Data_org_2017$X7826[which(Data_org_2017$type==t)]/1000)

                  , I(Data_org_2017$X7841[which(Data_org_2017$type==t)]/1000)

                  , I(Data_org_2017$Andel_3[which(Data_org_2017$type==t)]*100)

                  , I(Data_org_2017$deep_litter_share[which(Data_org_2017$type==t)]*100)  

                  , I(Data_org_2017$Milk_kv[which(Data_org_2017$type==t)] / Data_org_2017$X5110[which(Data_org_2017$type==t)]*100)

                  , Data_org_2017$Year_org[which(Data_org_2017$type==t)] )

APE_tobit<-matrix(0,nrow=1,ncol=dim(tobit_data)[2])

for (i in 1:dim(tobit_data)[2]){

  

  b_xj<- coef(tobit_org)[i+1]

  xb=predict(tobit_org)

  sigma=tobit_org$scale

  invmills <- dnorm(xb/sigma)/pnorm(xb/sigma)

  PE_Ey_ygt0_xj <- b_xj*(1-invmills*(xb/sigma+invmills))

  APE_tobit[1,i]<-mean(PE_Ey_ygt0_xj)

  

}

# Discrete variables

#APE

xb_c = predict(tobit_org)- tobit_org$coef[6]*(Data_org_2017$X6404[which(Data_org_2017$type==t)])+ tobit_org$coef[6]*(0)

xb_c1 = predict(tobit_org)- tobit_org$coef[6]*(Data_org_2017$X6404[which(Data_org_2017$type==t)])+ tobit_org$coef[6]*(1)

sigma=tobit_org$scale

Eyy_c1<- pnorm(xb_c1/sigma)*xb_c1+sigma*dnorm(xb_c1/sigma)

Eyy_c<- pnorm(xb_c/sigma)*xb_c+sigma*dnorm(xb_c/sigma)

PE <- Eyy_c1-Eyy_c

APE_disc<- mean(PE)

APE_tobit[1,5]<-APE_disc

APE_tobit_org<-APE_tobit

####---- Stargazer - tobit with efficiencies ----####

# # Run when estimating the GHG model with g(0,w)

# tobit_con_GHG<-tobit_con

# tobit_org_GHG<-tobit_org

# Sq_con_GHG<-Squarred_cor_con

# Sq_org_GHG<-Squarred_cor_org

# APE_con_GHG<-APE_tobit_con

# APE_org_GHG<-APE_tobit_org

# # Run when estimating the Revenue model with g(v,0)

# tobit_con_REV<-tobit_con

# tobit_org_REV<-tobit_org

# Sq_con_REV<-Squarred_cor_con

# Sq_org_REV<-Squarred_cor_org

# APE_con_REV<-APE_tobit_con

# APE_org_REV<-APE_tobit_org

names_org<- c("Number of cattle (100)",

              "Milk (DKK)/Total output (DKK)",

              "Fixed costs/Total costs (pct.)",

              "Dairy cattle / all cattle (pct.)",

              "Ownership (other than private)",

              "Cost to consulting - production (1.000 DKK)",

              "Cost to consulting - cattle (1.000DKK)",

              "Cost to consulting - economic (1.000 DKK)",

              "Share of jersey cattle (pct.)",

              "Share of cattle having a deep litter housing system (pct.)",

              "Milk production per dairy cattle (liter/cow)",

              "Year since converted to organic (year)")

names_con<- c("Number of cattle (100)",

              "Milk (DKK)/Total output (DKK)",

              "Fixed costs/Total costs (pct.)",

              "Dairy cattle / all cattle (pct.)",

              "Ownership (other than private)",

              "Cost to consulting - production (1.000 DKK)",

              "Cost to consulting - cattle (1.000DKK)",

              "Cost to consulting - economic (1.000 DKK)",

              "Share of jersey cattle (pct.)",

              "Share of cattle having a deep litter housing system (pct.)",

              "Milk production per dairy cattle (liter/cow)") 

####---- APE tabels ----####

## Conventional

APE_table_con<-data.frame(cbind(names_con,t(APE_con_GHG),t(APE_con_REV)))

APE_table_org<-data.frame(cbind(names_org,t(APE_org_GHG),t(APE_org_REV)))

write.csv(APE_table_con,file = "APE_table_con.csv")



write.csv(APE_table_org,file = "APE_table_org.csv")

Sq_con<-c(Sq_con_GHG,Sq_con_REV)

Sq_org<-c(Sq_org_GHG,Sq_org_REV)

# Conventional

stargazer(tobit_con_GHG,tobit_con_REV, align=TRUE,type="html",out="Tobit_models_CON_ny1.html",no.space=TRUE, single.row=TRUE,

          digits = 3,dep.var.labels="Inefficiency score",report=('vc*p'),covariate.labels=names_con,column.labels = c("GHG","Mix","Rev"),add.lines=c("Squarred 

correlation",Sq_con),decimal.mark="," ,digit.separator = ".")

# Organic

stargazer(tobit_org_GHG,tobit_org_REV, align=TRUE,type="html",out="Tobit_models_ORG_ny1.html",no.space=TRUE, single.row=TRUE,

          digits = 3,dep.var.labels="Inefficiency score",report=('vc*p'),covariate.labels=names_org,column.labels = c("GHG","Mix","Rev"),add.lines=c("Squarred 

correlation",Sq_org),decimal.mark="," ,digit.separator = ".")

#--------------------------------------------------------#

####---- Potentials and average opportunity costs ----####

#--------------------------------------------------------#

####---- Defining direction ----####

# all three models are ran at the same time when defining potentials and average opportunity costs 

## GHG model

g_GHG <- cbind(0.000000000000000000000000000000000000000001,0.000000000000000000000000000000000000000001, Y[,2]) # Only reducing GHG

g_GHG_con<-g_GHG[which(Data_2017$type==0),]

g_GHG_org<-g_GHG[which(Data_2017$type==1),]

# Benchmarking

sf_solved_GHG_con<-dm.sf.new(xdata = X_con,ydata = Y_con,rts="crs",g=g_GHG_con,wd=wd)

sf_solved_GHG_org<-dm.sf.new(xdata = X_org,ydata = Y_org,rts="crs",g=g_GHG_org,wd=wd)

## Revenue model

g_REV <- cbind(0.000000000000000000000000000000000000000001, Y[,1],0.000000000000000000000000000000000000000001) # Only reducing REV

g_REV_con<-g_REV[which(Data_2017$type==0),]

g_REV_org<-g_REV[which(Data_2017$type==1),]

# Benchmarking

sf_solved_REV_con<-dm.sf.new(xdata = X_con,ydata = Y_con,rts="crs",g=g_REV_con,wd=wd)

sf_solved_REV_org<-dm.sf.new(xdata = X_org,ydata = Y_org,rts="crs",g=g_REV_org,wd=wd)

#-------------------------#

####--- Potentials ----####

#-------------------------#

## GHG model

# Removing observations with negative shadow prices

Shadow_GHG_con<-round(sf_solved_GHG_con$p[,2]/sf_solved_GHG_con$p[,1],4)

Shadow_GHG_org<-round(sf_solved_GHG_org$p[,2]/sf_solved_GHG_org$p[,1],4)

Only_GHG_totpot_con<-sum((sf_solved_GHG_con$eff*Y_con[,2])[which(Shadow_GHG_con<0)])

Only_GHG_totpot_org<-sum((sf_solved_GHG_org$eff*Y_org[,2])[which(Shadow_GHG_org<0)])

Only_GHG_totpot_tot<-Only_GHG_totpot_con+Only_GHG_totpot_org

##  REV model

# Removing observations with negative shadow prices

Shadow_REV_con<-round(sf_solved_REV_con$p[,2]/sf_solved_REV_con$p[,1],4)

Shadow_REV_org<-round(sf_solved_REV_org$p[,2]/sf_solved_REV_org$p[,1],4)

Neg_REV_con<-which(Y[,1] %in% Y_con[which(!Shadow_REV_con<0),1]) 

Neg_REV_org<-which(Y[,1] %in% Y_con[which(!Shadow_REV_org<0),1]) 

Neg_REV_tot<-c(Neg_REV_con,Neg_REV_org)

Only_REV_totpot_con<-sum((sf_solved_REV_con$eff*Y_con[,1])[which(Shadow_REV_con<0)])

Only_REV_totpot_org<-sum((sf_solved_REV_org$eff*Y_org[,1])[which(Shadow_REV_org<0)])

Only_REV_totpot_tot<-Only_REV_totpot_con+Only_REV_totpot_org

####---- Potentials in volumes ----####

Potential_matrix<-matrix(0,nrow = 2,ncol=6)

colnames(Potential_matrix)<-c("GHG_con","GHG_org","GHG_tot","REV_con","REV_org","REV_tot")

rownames(Potential_matrix)<-c("Only GHG","Only Rev")

#Potential_matrix[1,]<-c(RAD_GHG_totpot_con,RAD_GHG_totpot_org,RAD_GHG_totpot_tot,RAD_REV_totpot_con/1000,RAD_REV_totpot_org/1000,RAD_REV_totpot_tot/1000)

Potential_matrix[1,1:3]<-c(Only_GHG_totpot_con,Only_GHG_totpot_org,Only_GHG_totpot_tot)

Potential_matrix[2,4:6]<-c(Only_REV_totpot_con/1000,Only_REV_totpot_org/1000,Only_REV_totpot_tot/1000)

Potential_matrix

write.csv(Potential_matrix,file = "Totpot.csv")

####---- Potentials in pct. ----####

Potential_matrix_pct<-matrix(0,nrow = 2,ncol=6)

colnames(Potential_matrix_pct)<-c("GHG_con","GHG_org","GHG_tot","REV_con","REV_org","REV_tot")

rownames(Potential_matrix_pct)<-c("Only GHG","Only Rev")

# Potential_matrix_pct[1,]<-c(mean(sf_solved_RAD_con$eff[which(Shadow_RAD_con<0)]),mean(sf_solved_RAD_org$eff[which(Shadow_RAD_org<0)]),RAD_GHG_totpot_tot/sum(Y[-

Neg_RAG_tot,2]),

#                             mean(sf_solved_RAD_con$eff[which(Shadow_RAD_con<0)]),mean(sf_solved_RAD_org$eff[which(Shadow_RAD_org<0)]),RAD_REV_totpot_tot/sum(Y[-

Neg_RAG_tot,1]))

Potential_matrix_pct[1,1:3]<-c(mean(sf_solved_GHG_con$eff[which(Shadow_GHG_con<0)]),mean(sf_solved_GHG_org$eff[which(Shadow_GHG_org<0)]),Only_GHG_totpot_tot/sum(Y[,2]))

Potential_matrix_pct[2,4:6]<-c(mean(sf_solved_REV_con$eff[which(Shadow_REV_con<0)]),mean(sf_solved_REV_org$eff[which(Shadow_REV_org<0)]),Only_REV_totpot_tot/sum(Y[-

Neg_REV_tot,1]))

Potential_matrix_pct

write.csv(Potential_matrix_pct,file = "Totpot_pct.csv")

#-----------------------------------------#

####---- Average opportunity costs ----####

#-----------------------------------------#

####---- Conventional average opportunity costs ----####

Rev_pot_con<-sf_solved_REV_con$eff*Y_con[,1]

Rev_pot_con<-Rev_pot_con[-c(which(sf_solved_REV_con$eff==0),which(!Shadow_REV_con<0),which(sf_solved_GHG_con$eff==0))]

which(Rev_pot_con==0)

GHG_pot_con<-sf_solved_GHG_con$eff*Y_con[,2]

GHG_pot_con<-GHG_pot_con[-c(which(sf_solved_REV_con$eff==0),which(!Shadow_REV_con<0),which(sf_solved_GHG_con$eff==0))]

which(GHG_pot_con==0)

Opp_cost_con<-Rev_pot_con/GHG_pot_con

mean(Opp_cost_con)

####---- Histogram of cenventional opportunity costs ----####

par(mfrow=c(1,2))

hist(Opp_cost_con,xlab="Opportunity cost conventional farms",ylab="",breaks = 40,family="Times New Roman",col="#ddd3c8",border="white",cex.lab=2,cex.axis=1.7,main="")

abline(v = mean(Opp_cost_con), col="black", lwd=2, lty=1)

####---- Organic average opportunity costs ----####

Rev_pot_org<-sf_solved_REV_org$eff*Y_org[,1]

Rev_pot_org<-Rev_pot_org[-c(which(sf_solved_REV_org$eff==0),which(!Shadow_REV_org<0),which(sf_solved_GHG_org$eff==0))]

which(Rev_pot_org==0)

GHG_pot_org<-sf_solved_GHG_org$eff*Y_org[,2]

GHG_pot_org<-GHG_pot_org[-c(which(sf_solved_REV_org$eff==0),which(!Shadow_REV_org<0),which(sf_solved_GHG_org$eff==0))]

which(GHG_pot_org==0)

Opp_cost_org<-Rev_pot_org/GHG_pot_org

mean(Opp_cost_org)



####---- Histogram of organic opportunity costs ----####

hist(Opp_cost_org,xlab="Opportunity cost organic farms",ylab="",breaks = 30,family="Times New Roman",col="#8b9086",border="white",cex.lab=2,cex.axis=1.7,main="")

abline(v = mean(Opp_cost_org), col="black", lwd=2, lty=1)

#--------------------------------------------------------------------------------------#

####-------------- Second stage analysis of Average opportunity costs --------------####

#--------------------------------------------------------------------------------------#

####---- OLS with average opportunity costs for conventional farms ----####

t=0 # Defining conventional farms

Data_con_2017<-Data_2017[which(Data_2017$type==t),]

Data_con_2017<-Data_con_2017[-c(which(sf_solved_REV_con$eff==0),which(!Shadow_REV_con<0),which(sf_solved_GHG_con$eff==0)),]

Data_con_2017$Opp_cost_con<-Opp_cost_con

con_shadow_model<-lm(Opp_cost_con~All_cattle

                     + I((milk/(milk+oo))*100)

                     + I((fix/input)*100)

                     + I((X5110/All_cattle*100))

                     + as.factor(X6404)

                     + I(Andel_3*100)

                     + I(deep_litter_share*100)

                     + I(Milk_kv / X5110*100)

                     ,data = Data_con_2017)

summary(con_shadow_model)

####---- OLS with average opportunity costs for organic farms ----####

t=1 # Defining organic farms

Data_org_2017<-Data_2017[which(Data_2017$type==t),]

Data_org_2017<-Data_org_2017[-c(which(sf_solved_REV_org$eff==0),which(!Shadow_REV_org<0),which(sf_solved_GHG_org$eff==0)),]

Data_org_2017$Opp_cost_org<-Opp_cost_org

org_shadow_model<-lm(Opp_cost_org~All_cattle

                     + I((milk/(milk+oo))*100)

                     + I((fix/input)*100)

                     + I((X5110/All_cattle*100))

                     + as.factor(X6404)

                     + I(Andel_3*100)

                     + I(deep_litter_share*100)

                     + I(Milk_kv / X5110*100)

                     + Year_org

                     ,data = Data_org_2017)

summary(org_shadow_model)

#### Stargazer for second stage of opportunity costs

stargazer(con_shadow_model,org_shadow_model, align=TRUE,type="html",out="shadow_models.html",no.space=TRUE, single.row=TRUE,

          digits = 3,dep.var.labels="Shadow price",report=('vc*p'),column.labels = c("Con","Org"),decimal.mark="," ,digit.separator = ".")

#--------------------------------------------------------------------------#

####---- Illustrating the weak disposability technology and the ddf ----####

#--------------------------------------------------------------------------#

####---- Costumizing fonts ----####

# library(extrafont)

# windowsFonts()

library(extrafont)

# font_import()

# y

# loadfonts(device = "win")

####---- Weak disposable technology ----####

Input<-c(1,1,1,1,1)

Output_1<-c(10.5,15,18,17,12)

Output_2<-c(5,8.5,12.5,15,17.5)

x_test<-Output_2/Input

y_test<-Output_1/Input

par(mfrow=c(1,1))

plot(c(x_test,14),c(y_test,10),col="#46626f",pch=16,ylab="v",xlab="w",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = FALSE,xlim=c(0,20),ylim=c(0,20),cex=2)

lines(c(0,x_test[order(x_test)],max(x_test[order(x_test)])), c(0,y_test[order(x_test)],0), xlim=range(x_test), ylim=range(y_test), pch=16,col="#46626f",lwd=2)

lines(c(0,x_test[order(x_test)][3:5],max(x_test[order(x_test)])), c(max(y_test),y_test[order(x_test)][3:5],0), xlim=range(x_test), ylim=range(y_test), 

pch=16,col="#46626f",lwd=2,lty=3)

lines(c(x_test[3:5],x_test[5]),c(y_test[3:5],0), xlim=range(x_test), ylim=range(y_test), pch=16,col="#ddd3c8",lwd=2) 

text(c(x_test+0.1,14+0.1),c(y_test+0.55,10+0.55),c("A","B","C","D","E","F"),family="Times New Roman")

####----- the DDF ----####

Input<-c(1,1,1,1,1)

Output_1<-c(10.5,15,18,17,12)

Output_2<-c(5,8.5,12.5,15,17.5)

x_test<-Output_2/Input

y_test<-Output_1/Input

par(mfrow=c(1,1))

plot(c(x_test,14),c(y_test,10),col="#46626f",pch=16,ylab="v",xlab="w",family="Times New Roman",cex.lab=1.7,cex.axis=1.5,frame = FALSE,xlim=c(0,20),ylim=c(0,20),cex=2)

lines(c(0,x_test[order(x_test)],max(x_test[order(x_test)])), c(0,y_test[order(x_test)],0), xlim=range(x_test), ylim=range(y_test), pch=16,col="#46626f",lwd=2)

#g(v,0)

text(14.3,18.5,expression(paste("g(",v^"k´",",0)")),family="Times New Roman",cex=1.5)

lines(c(14,14),c(10,17.3), xlim=range(x_test), ylim=range(y_test), pch=16,col="#46626f",lwd=2,lty=4)

#g(0,w)

text(3.8,10,expression(paste("g(0,",w^"k´",")")),family="Times New Roman",cex = 1.5)

lines(c(14,4.8),c(10,10), xlim=range(x_test), ylim=range(y_test), pch=16,col="#46626f",lwd=2,lty=4)

#g(v,w)

text(9.35,16.8,expression(paste("g(",v^"k´",w^"k´",")")),family="Times New Roman",cex=1.5)

lines(c(14,10),c(10,16.1), xlim=range(x_test), ylim=range(y_test), pch=16,col="#46626f",lwd=2,lty=4)

# The inffecient part of the frontier

lines(c(x_test[3:5],x_test[5]),c(y_test[3:5],0), xlim=range(x_test), ylim=range(y_test), pch=16,col="#ddd3c8",lwd=2)

# DMUs

text(15,9.8,expression(DMU^"k´"),family="Times New Roman",cex=1.5)

text(c(x_test+0.2,14+0.2),c(y_test+0.6,10+0.6),c("A","B","C","D","E",""),family="Times New Roman")

# Standard output oriented distance function

lines(c(0,17.35),c(0,12.35),col="#46626f",lwd=2,lty=3)


